
   
 

             
             

 
  

      
        

    
           

      
           

           
   

       
      
     

 
   

 
             

              
                

               
             

            
              

            
               

              
           

             
             

               
              
             

            
 

   
 

              
           

              

 

   

            
             

  
      

        
    

           
      

           
           
   

       
      
     

   

             
              

                
               

             
            
              

            
               

              
           

             
             

               
              
             

            

   

              
           

              

 

Final Project Report 

Climate- and land-cover-induced shifts in the distribution and abundance of invasive fish and 
their impacts on native fish communities in the Tennessee and Cumberland River Basins 

1. ADMINISTRATIVE 
Date of Report: 28 February 2025 
Period of Performance: 1 October 2020–30 September 2023 
Cooperative Agreement Number: G20AC00461-02 
Principal Investigator: Xingli Giam (Department of Ecology and Evolutionary Biology, The 

University of Tennessee, Knoxville, 609-751-4871, xgiam@utk.edu) 
Project Cooperators: Jacob H LaFontaine (USGS), Jennifer M Cartwright (USGS), Bart 

Carter (TWRA), David Matthews (TVA), Benjamin Keck (UTK), Taylor Woods (UTK), 
Guido Herrera (UTK) 

Total project funding request from SECASC: $232,515 
Total project funding from UTK: $13,716 
Total cost of project: $246,231 

2. PUBLIC SUMMARY 

The Southeastern USA is extremely rich in aquatic biodiversity, which includes native fish 
species such as brook trout, largemouth bass, and smallmouth bass that are important for 
recreational fisheries and to local economies. This region is also home to a large number of 
native species that may be less well-known to the public but nevertheless are of great 
conservation concern due to their small range and population sizes. In particular, the 
Tennessee and Cumberland river basins (TCRB) are among the most biodiverse and 
important in the US. However, the climate of the Southeast is changing rapidly. Further, 
many areas are undergoing increased urbanization. These changes contribute to warming of 
streams, changes in streamflow, and decline in stream water quality and habitat, which in turn 
may facilitate the introduction and spread of non-native (i.e., invasive) fish species. Here, we 
collaborated with natural resource agency managers, land-trusts, nonprofits to (1) identify 
non-native fish that expanded their distributions in the TCRB; (2) identify non-native fish 
whose abundances have increased; (3) examine the effect of climate and land-cover changes 
on fish invasions; (4) investigate impacts of non-native fish on native fish; and (5) identify 
locations that may become suitable for invasive fish under future climates. We generated new 
scientific knowledge that has improved our understanding of invasive fish species, and will 
inform current and future fish monitoring and management efforts in the Southeast. 

3. PROJECT SUMMARY 

Climate change and land-cover change are major stressors to biota in aquatic ecosystems. The 
Southeastern USA is an aquatic biodiversity hotspot among temperate regions globally. 
Aquatic invasive species are increasing in the Southeast. Because they have the potential to 
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negatively impact the freshwater ecosystems of this region and the unique native biota that 
these ecosystems support, state and federal agencies are focused on limiting the spread of 
existing non-native species, mitigating their impacts on ecosystems and the native species 
therein, and preventing the introduction and spread of new invasive species. However, the 
management of invasive species by agencies are compromised by the lack of information and 
data on how climate and land-cover changes affect the dynamics of species invasions, e.g., 
the rate at which non-native species increase its distribution across space, the rate at which 
they increase their local abundances, and which streams become suitable for these species in 
the future. In this project, we leverage on the field data and knowledge accrued by partners 
and collaborators in state and federal agencies, land-trusts, and nonprofits over the past ~40 
years, along with publicly available fish occurrence data from GBIF and museum collections, 
to fill the knowledge gaps in how climate and land-use change has impacted the invasion 
dynamics of non-native species in the past ~30 years and how these changes are projected to 
affect invasion dynamics in the next ~30 years in the Tennessee and Cumberland River basins 
(TCRB). Specifically, our project (1) identified non-native fish that have occupied an 
increased number of streams in the TCRB; (2) identified non-native fish whose abundances 
have increased; (3) examined the ecological mechanisms by which factors associated with 
climate and land-cover changes might affect invasion trajectories; (4) investigated impacts of 
non-native fish on native fish; and (5) identified locations that may become suitable for 
invasive fish under future climates in 2035-2065. 

Our analyses found that the four species of Asian carp (silver carp Hypophthalmichthys 
molitrix; grass carp Ctenopharyngodon idella; bighead carp Hypophthalmichthys nobilis; and 
black carp Mylopharyngodon piceus) are among the non-native species that showed the 
greatest rate of increase in the number of stream catchments occupied about the past ~30 
years. Species that are native to the US but not to the TCRB such as striped bass (Morone 
saxatilis) and eastern mosquitofish (Gambusia holbrooki) showed sustained increase as well. 
Alabama bass, Micropterus henshalli, was not recorded in the TCRB before 2010, but was 
recorded in 10 unique stream reaches in our dataset by the end of 2024. In terms of local 
abundances relative to other species within individual sites, silver carp H. molitrix, blueback 
herring Alosa aestivalis, yellowfin shiner Notropis lutipinnis, and margined madtom Noturus 
insignis, showed evidence (ranging from weak to very strong) of increasing abundances. 

So what climate and land-cover change-related ecological mechanism(s) may have driven 
changes in total abundances, as well as richness of non-native fish, relative to the total 
abundances and richness of native fish? We found evidence that decreasing month-to-month 
variation in stream flow through time (i.e., flow becoming less seasonal) was associated with 
an increase in the relative total abundance and richness of non-native fish across sampling 
sites. In addition, streams that drain an upstream watershed with lower percent tree cover 
were associated with a more positive trend in non-native abundance and richness. Lastly, we 
mapped habitat suitability for 37 non-native species under current (1980-2010) and future 
(2035-2065) climate and land-cover scenarios. In general, we found warmwater- and 
mainstem-adapted species that are currently invading in the lower reaches of the TCRB such 
as silver carp (Hypophthalmichthys molitrix; under RCP 8.5) and bighead carp (H. nobilis, 
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under RCP 4.5 and 8.5) are likely to see an increase in climatically suitable habitat in the 
future (2035-2065), particularly along the mainstem and large tributaries of the Tennessee 
and Cumberland Rivers, upstream from their current distribution. By contrast, non-native 
species in the Upper Tennessee and French Broad-Holston regions that are currently 
occupying cooler streams in the Blue Ridge ecoregion, such as rainbow trout (Onchorynchus 
mykiss)and yellowfin shiner (Notropis lutipinnis) are projected to see declines in climatically 
suitable habitat as streams warm and/or precipitation patterns change. 

Our project was the first to examine invasion dynamics (i.e,, changes in the spatial 
distribution and local abundances) of non-native fish species and project future locations that 
may become suitable for the spread of these species in the biologically important TCRB. By 
identifying non-native species that are increasing in occupied watersheds and/or abundance, 
our results can inform monitoring and eradication efforts conducted by agencies. By 
identifying the ecological mechanisms underlying increasing non-native abundances and 
richness, agencies and researchers can design programs that target (reduce) the effect of 
important variables such as maintaining high tree cover in important watersheds. Last, 
agencies and land-trusts can use habitat suitability maps to monitor the locations that 
non-native fish are likely to spread to and occupy under future climates. All these represent 
new scientific knowledge that has improved our understanding of invasive fish species, and 
will inform current and future fish monitoring and management efforts in the Southeast. 

4. PURPOSE AND OBJECTIVES 

The Southeastern USA is a highly dynamic region that has experienced rapid climate and 
land-cover change over the past half-century (Vose et al. 2017; Troia et al. 2019; Costanza et 
al. 2020). Both climate and land-cover change are expected to continue into the future 
(Terrando et al. 2014; Vose et al. 2017). Annual mean temperature is projected to increase by 
1.9-2.4°C by mid-century. We would also expect more frequent and severe precipitation 
events, along with drier summers (Vose et al. 2017). Urban land-cover is expected to increase 
by 139% to 2060 (Terrando et al. 2014). 

Climate and land-cover change is an important and pressing issue in the Southeast because of 
the unique and rich biodiversity it supports. In particular, the Southeast is globally important 
for freshwater biodiversity conservation because it is home to a diverse freshwater fauna, 
many species of which are highly range-restricted and found nowhere else. For fish, the 
Southeast contains nearly 80% of all fish species found in the US and Canada, including 
many found only in one or a few watersheds (Elkins et al. 2019; NatureServe 2010). Among 
the most important river basins in this region are the Tennessee and Cumberland River basins 
(hereafter, TCRB), which span 7 US states and support high total, range-restricted, and 
imperiled fish species richness (Elkins et al. 2019; Collen et al. 2014). 

As climate and land-cover change continues into the future, an increase in air temperature, 
changing precipitation patterns, and land-cover change will likely interact to increase stream 
temperature, alter streamflow patterns, and stream habitat quality. Recent studies have 
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examined how these changes may impact species communities and the distributions of native 
fish (Troia et al. 2019; Troia & Giam 2019; Comte et al. 2022). Less well-studied is the effect 
of climate and land-cover change on another important stressor in freshwater ecosystems: 
invasive species. Invasive fish may outcompete native fish, predate upon them, and/or alter 
their stream habitat, thus negatively impacting native fish species (Rahel & Olden 2008; 
Chick et al. 2020). We hypothesize that stream temperature warming, changes in flow 
magnitude and flow regime, and changes in land-cover may facilitate fish invasions. 

As invasions of non-native aquatic species accelerate in the Southeast (Mangiante et al. 
2018), state and federal agencies are working to limit the spread of existing non-native 
species, mitigate their impacts, and prevent future invasions (e.g., Tennessee Wildlife 
Resources Agency, undated; US Fish & Wildlife Service, 2015). A region-wide study that 
examines the effect of climate change on invasive fish and their impacts on native fish 
communities in the TCRB can provide important information to state and federal agencies 
about the ecological mechanisms that facilitate fish species invasions; however, up to now, no 
such study has been conducted. Here, we sought to fill in this crucial knowledge gap by 
collaborating with partners and collaborators from state and federal agencies, land-trusts, and 
nonprofits to answer the following questions: (1) Which invasive fish species have expanded 
their distributions over the past 15-30 years? (2) Which species have increased their 
abundances in the past 15−30 years? (3) How does climate- and land-cover-associated 
changes in stream temperature and flow dynamics impact invasions? (4) How does invasive 
fish species impact native fish communities? (5) Which streams are likely to be colonized by 
which invasive species in the next 30 years? 

In our research, we have met our original objectives and goals by answering the questions 
listed above (see sections 6-8). In particular, we identified non-native fish species that have 
expanded their distributions over the last ~30 years, focusing on species that have accelerated 
in terms of their distribution increase over the last 15 years (e.g., the four Asian carp species). 
We also used a meta-analytic approach to synthesize relative abundance information on each 
non-native species at every site in its introduced range to identify species that have 
experienced the greatest increase in their relative abundance across sites that they occupy 
(e.g., silver carp, blueback herring, yellowfin shiner, and margined madtom). We also 
synthesized community sampling data from different state and federal agencies to identify the 
most important climate- and land-cover change related variables that were associated with the 
increase in the relative richness and total abundance of non-native species across sites. 

At the project kickoff meeting, in our discussion with agency partners and collaborators, we 
leveraged their field knowledge and experience to identify which non-native fish species we 
should be focusing on in our research. We also asked them which non-native species are of 
particular interest or are management priorities for them. We also asked them about what 
information about these species would help inform their management of these species. Based 
on their answers (see section 5.1 Co-production approach), we fine-tuned some of our 
questions and discussions based on the species they identified, i.e., silver carp 
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(Hypophthalmichthys molitrix) and other Asian carp species, yellowfin shiner (Notropis 
lutipinnis), mosquitofish (Gambusia spp.), and redbreast sunfish (Lepomis auritis). 

5. ORGANIZATION AND APPROACH 

5.1. Co-production approach 

We designed and implemented this project using a co-production approach that incorporates 
the fish ecology and management expertise, field experience and knowledge, and data 
collected by collaborators and partners (comprising natural resource managers, fisheries 
biologists, conservation biologists, research hydrologists) from federal corporations and 
agencies (TVA, USGS), state natural resources/fisheries agencies (Tennessee Wildlife 
Resources Agency, NC Department of Environmental Quality, KY Department for 
Environmental Protection, KY Department of Fish and Wildlife Resources, Alabama 
Department of Environmental Management, Geological Survey of Alabama, Georgia 
Department of Natural Resources, Virginia Department of Wildlife Resources), land-trusts 
and nonprofits (Mainspring Conservation Trust and Conservation Fisheries). We worked with 
collaborators and partners to obtain fish and streamflow data at the start of the project and to 
complete the necessary data cleaning and processing. The project team organized a project 
kickoff meeting over Zoom to present preliminary data and to solicit feedback on additional 
research questions that might be of management interest to the respective agencies. 
Specifically, we received feedback to examine (1) the abundance and/or range changes of 
redbreast sunfish (Lepomis auritis) in the TCRB; (2) the status and invasive dynamics of 
yellowfin shiners (Notropis lutipinnis); (3) risk areas for silver carp (Hypophthalmichthys 
molitrix) invasion based on their dispersal capability; (4) the impact of mosquitofish 
(Gambusia sp.) on Barrens topminnow (Fundulus julisia); and (5) identify small-ranged 
native fish that occur in streams that are likely to be invaded in the future. Not all of these 
questions could be answered satisfactorily with the data that we have compiled; nevertheless, 
they provided a valuable perspective of which questions are most important for state agencies 
and managers, which informed our analyses and the discussions of our results. 

5.2 The Tennessee and Cumberland River Basins (TCRB) 

Our research focuses on the Tennessee River basin [Watershed Boundary Dataset (WBD) 
2-digit hydrological unit code (HUC2) 05] and the Cumberland River basin (4-digit 
hydrological unit code (HUC4) 0513) (Fig. 1). The Tennessee River basin spans 7 states 
(Virginia, North Carolina, Tennessee, Georgia, Alabama, Mississippi, and Kentucky) and 
drains a total of 105,950 km2 of land area. The headwaters of the Tennessee River basin 
originate in the mountains of the Appalachian-Blue Ridge forest ecoregion in southwestern 
Virginia, eastern Tennessee, and western North Carolina. Headwaters and tributaries of the 
French Broad and Holston rivers [6-digit hydrological unit code (HUC6) 060101] drain the 
mountains of these three states, and these two rivers eventually meet in Knoxville, TN, 
making the formal start of the Tennessee River. The Clinch, Emory, and Little Tennessee 
systems (which comprise HUC 060102) flow into the Tennessee River mainstem at various 
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points downstream of the confluence of the French Broad and Holston. These two HUC6 
units, 060101 French Broad-Holston and 060102 Upper Tennessee comprise the HUC4 0601 
Upper Tennessee, which marks the Tennessee River basin above Watts Bar Dam. Continuing 
downstream of Watts Bar Dam, the Tennessee River receives flow from the Hiwassee (and 
upstream of it, the Ocoee that is located in Tennessee, North Carolina, and Georgia) and 
Sequatchie drainages along with several other smaller watersheds. Together this section of 
the Tennessee River and the basins draining into it makes up HUC4 0602 Middle 
Tennessee-Hiwassee. From there, the Tennessee River flows into Alabama and back up north 
into Tennessee to the Pickwick Dam in Hardin county, TN. This section of the Tennessee 
River and its upstream catchments is HUC4 0603, and important river systems include the 
Elk, which covers both Tennessee and Alabama, and the Bear, which is in Mississippi and 
Alabama. Downstream of Pickwick Dam is the Lower Tennessee (HUC4 0604), which 
comprises river systems such as the Duck and the Buffalo. Finally, the Tennessee River flows 
northward into Kentucky where it drains into the Ohio River at Paducah, KY. 

Like the Tennessee River, the Cumberland River is a tributary of the Ohio River. It spans 
Kentucky and Tennessee, and drains a total land area of 46,390 km2. The Cumberland River 
comprises two main sections, the Upper Cumberland (HUC6 051301) and the Lower 
Cumberland (HUC6 051302). The headwaters and tributaries of the Upper Cumberland 
originate in southwestern Kentucky in the Cumberland Plateau. Important river systems in 
the Upper Cumberland include South Fork Cumberland, Obey, and Caney Fork. Downstream 
of the confluence between Caney Fork and the Cumberland River mainstem marks the start 
of the Lower Cumberland, which comprises river systems such as the Harpeth and Stones. 
Finally, the Cumberland River flows into the Ohio River at Smithland, KY, just a little 
northeast of the confluence between the Tennessee River and the Ohio River. 

Fig. 1. Map of the Tennessee and Cumberland River basins (TCRB). HUC6 units are 
color-coded: pink hues indicate HUC6 units within the Tennessee River basin and grey hues 
indicate HUC6 units within the Cumberland River basin. Grey lines are state lines and blue 
lines are major streams and rivers within the TCRB. Thicker lines represent stream reaches 
that drain a greater upstream catchment area (i.e, more “downstream” reaches). 
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5.3. Fish data 

We compiled two main types of fish data in the TCRB: (i) fish community monitoring data 
(hereafter, community data) and (ii) fish occurrence data. Community data are collected by 
fish community monitoring programs in which the objective is to obtain a representative 
sample of the fish community at a given location on a given day. The sampling protocol and 
method/gear may differ across programs and among sites within a program. Sampling 
protocols include IBI sampling, CPUE sampling and n-pass electrofishing samples. 
Electrofishing was the main sampling method although there is variation in the gear used 
based on what gear is most appropriate for the stream, i.e., backpack for smaller wadeable 
streams, tow-barge for larger wadeable streams, and/or boat electrofisher for large, non 
wadeable streams. Each community sample comprises abundance counts of all species 
sampled in a unique sampling occasion (at a unique day and location based on site identifier 
or geographic coordinates provided in the dataset). 

Occurrence data indicate the existence of a given species in a given location and time as 
evidenced by museum specimens (GBIF and University of Tennessee Etnier Ichthyological 
Collection [UTEIC]), material citations (e.g., citations of materials or specimens in 
taxonomic papers describing a new species), human observation (research-grade records 
provided by iNaturalist via Global Biodiversity Information Facility [GBIF]), and GBIF 
records that were classified as “Occurrence” (which includes general occurrence information 
included in the literature). Last, we included data from monitoring programs that were 
associated with targeted sampling (e.g., sampling programs targeting game fish by TWRA) in 
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our occurrence dataset because they are likely not representative of the fish community at 
that location. To be conservative, data from monitoring programs that did not explicitly link a 
set of species (the presumed community) sampled to a given sampling occasion was included 
as occurrence and not community data. 

For all data, we checked and corrected typographical errors in locality and geographical 
coordinates. We also standardized the taxonomy across the different datasets. We followed 
Integrated Taxonomic Information System (ITIS; www.itis.gov) taxonomy for most species 
except for newly described species e.g., Percina freemanorum, Aphredoderus gibbosus, 
Forbesichthys papilliferus, where we followed Catalog of Fishes. We excluded (i) fish 
records that are not identified to the species-level; (ii) hybrids; and (iii) marine species (as 
defined by FishBase; www.fishbase.org). Below we summarize the fish community (Table 1) 
and fish occurrence (Table 2) datasets we have compiled for our analyses. 

Table 1. Fish community datasets. Year range denotes the first and last year of sampling. 
Nrecord: total number of records (each record is the abundance of a given species found in a 
unique sampling occasion). Nsample: total number of sampling occasions. NCOMID: number of 
stream reaches (each stream reach is a unique COMID in the National Hydrography Dataset 
Plus (NHDPlus) v21 National Seamless Geodatabase) sampled by each program. 

No. Source Year range Nrecord Nsample NCOMID 

1 TVA Fish IBI Monitoring 1998-2022 91874 3855 1131 

2 TWRA Fish Monitoring 1985-2018 16287 1411 1006 

3 Mainspring Conservation Trust 1990-2022 12519 856 130 

4 KYDEP Fish Monitoring 1978-2016 9684 726 204 

5 NCDEQ Fish IBI Monitoring 1993-2022 5311 394 189 

6 USGS National Water Quality 
Assessment 

1996-2019 4197 182 131 

7 EPA National Rivers and Streams 
Assessment 

2008-2019 2974 143 86 

8 ADEM/GSA Fish Monitoring 2013-2022 1144 46 36 

9 GADNR Fish Monitoring 2002-2017 710 33 12 

All datasets combined 1978-2022 144700 7646 2647 

8 

http://www.itis.gov
www.fishbase.org


                
                

                
              

        
 

      

     

       

       

         

       

       

     
  

   

       

 
 

     
 

               
            

             
              

             
              

           
           
               

 
             

            
               

              
            
              

              
              

              
              

               

 

                
                

                
              

        

      

     

       

       

         

       

       

     
  

   

      

     

               
            

             
              

             
              

           
           
               

             
            

               
              

            
              

              
              

              
              

               

 

Table 2. Fish occurrence datasets. Year range denotes the first and last year of a recorded 
occurrence in each dataset. Nrecord is the total number of records (each record is a given 
species observed to be occurring at a given location and time). Ncomid represents the number of 
stream reaches (each stream reach is a unique COMID in the NHDPlus v21 National 
Seamless Geodatabase) associated with records in each dataset. 

No. Source Year range Nrecord NCOMID 

1 GBIF 1789-2025 95814 7683 

2 KDFWR Fish Database 1925-2021 53597 1769 

3 VADGIF Fish Database 1885-2017 40778 1007 

4 Conservation Fisheries Inc. (CFI) Database 1986-2018 28518 717 

5 UTKEIC Specimen Collection 1926-2023 17522 2720 

6 TWRA Fish Monitoring 2000-2019 13643 942 

7 USGS Nonindigenous Aquatic Species 
(NAS) Database 

1875-2023 3452 1414 

All datasets combined 1789-2025 253324 11868 

5.4. Stream network geospatial data 

Our analyses are conducted at the stream reach (and the associated catchment) spatial grain as 
defined by the NHDPlus v21 National Seamless Geodatabase. We overlaid fish community 
and occurrence data with the catchment layer of the NHDPlus v21 National Seamless 
Geodatabase to identify the stream reach (COMID) from which each fish community and fish 
species occurrence was taken. We only considered COMIDs that are associated with a 
NHDPlus v21 flowline in our analyses, thus we excluded sinks (catchments that are not 
flow-connected to other catchments) from our analyses. Environmental data (see 5.5. 
Land-cover data, 5.7 Other environmental data; 5.8. Stream temperature data, 5.9. 
Streamflow data) were all generated at this same COMID spatial grain to match fish data. 

We used functions from the R packages ‘nhdplusTools’ (Blodgett and Johnson, 2023) and 
‘hydroloom’ (Blodgett, 2023) to identify the upstream catchments that contribute to each 
catchment. For a given focal catchment, the set of all upstream catchments together with the 
focal catchment constitutes its full upstream watershed (sensu Hill et al., 2016 and the 
StreamCat dataset; hereafter, the watershed scale). We use upstream catchment data to 
accumulate streamflow for each catchment (see 5.9. Streamflow data) as well as to calculate 
percent land-cover at the watershed scale (see 5.5. Land-cover data). We also obtain other 
environmental data at the watershed scale (see 5.7. Other environmental data), which we will 
use as environmental predictors to model stream temperature at each stream reach as the 
temperature at a given stream reach is affected by energy transfer and hydrological processes 
occurring in the entire watershed that contributes to a stream reach (Leach et al. 2013). 
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5.5. Land-cover data 

We used different sets of land-cover data for different analyses to maximize consistency with 
the temporal range of the fish datasets used in each analysis as well as to ensure that input 
datasets used in each analysis is internally consistent. For example, the USGS LCMAP data 
(USGS, 2022) was used in the fish community analysis (Analysis 4) because its temporal 
coverage (1985-2021) coincided with the fish community data that we have compiled. 
Likewise, the Sohl et al. (2014) land-cover dataset was used to calibrate the historical and 
future streamflow projections used in species distribution modelling analysis (Analysis 6); 
therefore we used the Sohl dataset rather than the USGS LCMAP data for that analysis. 

5.5.1. USGS LCMAP data - recent community change analysis (5.14. Analysis 4) 

We used land-cover data from the USGS Land Change Monitoring, Assessment, and 
Projection (LCMAP) Collection v1.3, which includes eight main cover classifications over 
CONUS: Tree Cover, Developed, Grass/Shrub, Cropland, Water, Wetland, Snow/Ice, and 
Barren (USGS, 2022). For each stream reach (COMID) in the TCRB (and surrounding 
basins, See Stream Temperature Data for details), we calculated the percentage of the 
associated catchment occupied by each land-cover type for each year during the historical 
period from 1985 to 2021. Since LCMAP data for 2022 has not yet been released, we 
employed linear regression models to assess temporal trends over the last 10 years 
(2011–2021) at each COMID to extrapolate the land cover distributions for 2022. Using 
catchment-scale land-cover percentages and catchment area, we calculated watershed 
land-cover percentages for each COMID using functions from the ‘nhdplusTools’ (Blodgett 
and Johnson, 2023) and ‘hydroloom’ (Blodgett, 2023) packages in R (R Core Team, 2024). 

5.5.2. Sohl land-cover data - species distribution modelling analysis (5.16. Analysis 6) 

We used annual historical (1890-2010) and future projections (2035-2065) for land cover 
classes from Sohl et al. (2014). For historical data, we used a combination of observed 
(1980-2005) and forecasted (2006-2010) land-cover from the AB scenario to maintain 
consistency with the calibration of streamflow Lafontaine & Riley (2003). For each COMID, 
we averaged the percent coverage of each land-cover class for each period: historical and 
future. 

5.6. Climatic data 

As in the case of land-cover data described above, we used different sets of climatic data to 
maximize consistency with the temporal range of the fish datasets used in each analysis and 
to ensure that input datasets used in each analysis are internally consistent. 

5.6.1. gridMet climatic data - recent community change analysis (5.14. Analysis 4) 

gridMET provides daily precipitation, as well as minimum and maximum temperature, at ~4 
km resolution from 1979 to the present for CONUS (Abatzoglou, 2013). We retrieved daily 
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time series of these climatic variables from 154 monitored reaches across the Southeastern 
USA. from May 2017 to December 2020, corresponding to each logger monitoring stream 
water temperature. These data served as the primary input for building a water temperature 
model to analyze fish community-level changes. 

5.6.2. Maurer et al. (2002) climatic data - species distribution modelling analysis (5.16. 
Analysis 6) 

Maurer et al. (2002) provide daily and monthly downscaled climate projections at a ⅛-degree 
resolution for CONUS. While the initial publication covers data from 1950 to 2000, 
subsequent expansions include historical observed data up to 2010 and future projections 
extending up to 150 years for multiple scenarios (available at: 
https://gdo-dcp.ucllnl.org/downscaled_cmip_projections/dcpInterface.html). 

For the SDMs analysis, we extracted daily minimum and maximum temperatures, as well as 
precipitation, for the period 1980–2010 as the historical baseline and for the future scenario 
(2035–2065) using the Bias-Corrected Constructed Analogs V2 (BCCAv2) dataset from the 
Coupled Model Intercomparison Project Phase 5 (CMIP5). The future scenarios included two 
Representative Concentration Pathways (RCPs; 4.5 and 8.5) from 12 General Circulation 
Models (GCMs) [also used for future flow scenarios modeled by Lafontaine & Riley (2023)], 
resulting in a total of 24 climate future scenarios. For each scenario, these data were 
aggregated to monthly means and spatially averaged at the COMID level for stream reaches 
across CONUS where fish occurrences were recorded. The resulting averaged reach values 
were then used to compute 19 bioclimatic variables for both historical and future scenarios. 

5.7. Other environmental data 

In addition to the land-cover and climatic data described above, we used a variety of data that 
describe the physical environment and geomorphology of the stream reach and its associated 
catchment and watershed. For example, we used mean % clay, mean water table depth, mean 
bedrock depth, base flow index, elevation, watershed area data from StreamCat (Hill et al., 
2016). We also calculated a metric of northness (the extent to which the catchment is facing 
north as a measure of solar radiation intensity) from Amatulli et al. (2018). We also included 
the degree of regulation (DOR) metric, which quantifies the degree to which upstream dams 
affect the flow at each focal stream reach. These data were used as predictor variables for 
stream temperature modeling (see 5.8. Stream temperature data). 

5.8. Stream temperature data 

We used the ranger package in R to calibrate random forest models to predict maximum daily 
water temperature across the TCRB under historical conditions. We modeled the daily 
maximum temperature obtained from 154 monitored reaches (i.e., COMID) from May 2017 
to December 2020, spanning nine sub-basins at the HUC8 level (167,714 temperature 
measurements) using stream temperature logger data from Troia et al. (2019) and USGS 
NWIS within the TCRB and adjacent drainages. We employed a set of 18 reach and upstream 
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catchment scale predictors, including climatic, land cover, soil and hydrographic predictors 
annual land cover (Table 3). To select the best climatic proxies for maximum water 
temperature, we evaluated their lagged correlations with maximum air temperature and mean 
precipitation over average conditions for 1-7 days. The highest average correlations across 
the 154 stations with maximum air temperature and precipitation are found with average 
conditions from the past 4 (average r = 0.9498) and 7 days (average r = -0.06439), 
respectively. 

Table 3. Climatic, land cover, and hydrographic variables considered for stream 
temperature modeling. We tested for potential collinearity issues among this initial set of 
variables to select a final set of 14 variables (|r| < 0.7) for inclusion as model predictors. 
Dataset source citations: 1Abatzoglou (2013); 2USGS (2022); 3Hill et al. (2016); 4NHDPlusv2 
National Seamless Geodatabase (https://www.epa.gov/waterdata/nhdplus-national-data) 

Variables Scale Type Source Included 

4-day average of the daily 
maximum air temperature (°C) 

Catchment Climate gridMET1 Yes 

7-day average of daily 
precipitation (mm) 

Catchment Climate gridMET1 Yes 

Day of the year (DOY) - Climate - Yes 

Tree cover (%) Catchment, 
Watershed 

Land-cover LCMAP CONUS v1.32 Yes 

Developed (%) Catchment, 
Watershed 

Land-cover LCMAP CONUS v1.32 Yes 

Cropland (%) Catchment, 
Watershed 

Land-cover LCMAP CONUS v1.32 No 

Mean % Clay Watershed Hydrographic StreamCat3 (CLAYWS) No 

Mean Water Table Depth Watershed Hydrographic StreamCat3 (WTDEPWS) Yes 

Mean Bedrock Depth Watershed Hydrographic StreamCat3 (RCKDEPWS) Yes 

Base Flow Index Watershed Hydrographic StreamCat3 (BFIWS) Yes 

Elevation Catchment Hydrographic StreamCat3 (ElevCat) Yes 

Total area (km2) 
(Watershed area) 

Watershed Hydrographic NHDPlusv24 Yes 

Northness Catchment Hydrographic Amatulli et al. (2018) Yes 

Degree of dam regulation 
(DOR) 

Watershed Hydrographic Spinti et al. (2023) Yes 

To identify the best combination of hyperparameters in random forest fitting (node size, mtry, 
and sample fraction), we evaluated 125 candidate models with contrasting and different 
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combinations of these parameters using all available data for training (node size: 2, 4, 6, 8, 
10, 14, mtry: 2, 4, 6, 8, 10 and 14, and sample fraction: 0.2,0.4, 0.6, 0.8 and 1). For each 
model, we set the number of trees to 150 (10 times the number of predictors) and allowed 
resampling with replacement. We measured the goodness of fit of the candidate models by 
assessing the gain in RMSE, MAE, and R2 on the training dataset (i.e., out-of-bag prediction). 

Subsequently, we assessed the predictive performance of the top 10% of candidate models (n 
= 12) identified through hyperparameter tuning using a k-fold spatial cross-validation 
approach. Each top candidate model was trained nine times, with observations from the 
stations in each HUC8 omitted one at a time for testing. We quantified predictive 
performance by calculating RMSE, MAE, and R² using predictions from the testing datasets. 
The best-performing model in the spatial cross-validation (RMSE = 2.032°C, MAE = 
1.494°C, R² = 0.906) (Figures 2 and 3) was selected to generate daily water temperature 
predictions under historical climatic conditions (1985–2022) in the TCRB. River basins. 
Daily values were then aggregated at the monthly level for historical conditions between 
1985-2022. 

5.9. Streamflow data 

5.9.1. 1985-2021 PRMS flow data - recent community change analysis (5.14. Analysis 4) 

Historical streamflow data for 1980–2021 were obtained from simulations using the 
Precipitation Runoff Modeling System (PRMS) v5.1.0, coupled with the USGS National 
Hydrologic Model Infrastructure (NHMI). PRMS was calibrated independently for the TCRB 
using climate forcings from gridMET (1985–2022) and dynamic land cover data from 
LCMAP v1.3. We estimated surface imperviousness annually (1985–2022) at each COMID 
using the National Land Cover Dataset (NLCD) Surface Imperviousness Product 
(2001–2021, available biennially) as input for a linear mixed model, which relates developed 
land cover percentage to imperviousness. 

PRMS simulations yielded daily outflow values for relatively large-sized Hydrological 
Response Units (HRUs), from which we calculated the average monthly outflow for each 
HRU. We then downscaled monthly streamflow at the HRU spatial grain to the local 
catchment (COMID) spatial grain based on spatial intersections between HRU and COMID, 
proportionally disaggregating HRU outflows according to the relative areas of each 
intersection. Since a COMID may intersect multiple HRUs, we summed outflow values from 
each intersection to obtain the average monthly outflow of a given COMID. To obtain the 
total amount of streamflow at a given COMID, we summed outflow values from all upstream 
catchments that flow into that COMID (i.e., the watershed) using functions from the 
‘nhdplusTools’ (Blodgett and Johnson, 2023) and ‘hydroloom’ (Blodgett, 2023) packages in 
R (R Core Team, 2024). This flow data was generated for the Tennessee River basin because 
it was the focal region of the community change analysis (see 5.14. Analysis 4). 

5.9.2. Historical and future PRMS flow data - species distribution modelling analysis 
(5.16. Analysis 6) 
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For SDMs analysis, we used PRMS v5.1.0 simulations for historic (1980–2010) and future 
(2035-2065), calibrated by LaFontaine & Riley (2023) with climate forcings from Maurer et 
al. (2002) and land cover data from Sohl et al. (2014) for the conterminous USA. The 
streamflow downscaling process followed the same approach as above, from individual HRU 
outflows to the streamflow at individual stream reaches (COMID) via the steps described 
above in 5.8.1.: spatial intersections of HRU with COMID, proportional disaggregation of 
outflow at the HRU spatial grain to the COMID spatial grain, and summing outflow values 
from all upstream catchments that flow into each focal COMID.Finally, average monthly 
streamflow was converted into an initial set of 25 hydrological indicators for all future and 
historical scenarios, following the framework proposed by Olden & Poff (2003) to capture 
different dimensions of the hydrological regime (magnitude, frequency, duration, timing) 
across streams in the U.S. We followed the guidelines and code provided by Morden et al. 
(2023) to adapt 115 hydrological indicators from daily flow regimes to monthly flow 
regimes. Hydrological indicators from the rate-of-change dimension not because they are not 
transferable to monthly metrics (Morden et al. 2023). 

5.10. Assigning native vs. non-native status to fish species 

For each fish record, we assigned whether the species is native or non-native to the HUC6 
(6-digit hydrological unit code) within which the locality of the fish record is embedded. 
There are seven HUC6 units in the TCRB: two in the Cumberland basin (051301 Upper 
Cumberland and 051302 Lower Cumberland) and five in the Tennessee basin (060101 French 
Broad-Holston; 060102 Upper Tennessee; 060200 Middle Tennessee-Hiwassee; 060300 
Middle Tennessee-Elk; 060400 Lower Tennessee). We made native vs. non-native 
assignments based on information from a wide variety of literature sources including data 
from USGS Nonindigenous Aquatic Species (NAS) website (https://nas.er.usgs.gov/), fish 
atlases (e.g., Etnier and Starnes, 1993; Tracy et al. 2020), the Tennessee Aquarium 
Conservation Institute (TNACI) Freshwater Information Network (https://tnacifin.com/), 
NatureServe Explorer (https://explorer.natureserve.org/), species descriptions and taxonomic 
revisions, and expert assessment by Xingli Giam and Benjamin Keck (University of 
Tennessee, Knoxville). There were a small number of records in which there was no strong 
evidence or consensus if the species was actually native or non-native to the HUC6 they were 
sampled. For example, Etnier & Starnes (1993, on pg. 200) described the distribution and 
status of the golden shiner, Notemigonus crysoleucas, as “Probably rare or absent from east 
and middle Tennessee prior to reservoir construction, but now established in larger waters of 
these areas as a result of bait bucket introductions or expansion of once-scattered 
populations.” Another example is the warmouth, Lepomis gulosus, that was classified by 
USGS NAS as native to 060300 Middle Tennessee-Elk and 060400 Lower Tennessee but 
non-native in other HUC6 units in the TCRB. Tracy et al. (2020) in their NC Fish Atlas stated 
that L. gulosus was non-native to watersheds within 060101 French Broad-Holston and 
060102 Upper Tennessee. However, Etnier & Starnes (1993) did not mention that the 
warmouth as being non-native to any specific watersheds in Tennessee (Etnier & Starnes, 
1993; pg. 414) and classified it as a species that is native to Tennessee (Etnier & Starnes, 

14 

https://nas.er.usgs.gov/
https://tnacifin.com/
https://explorer.natureserve.org/


               
        

              
               

                 
                
              

               
  

 
               

               
              

                 
                

            
 

                
                

         
 

        
 

              
            

                 
         

                 
               

            
               

                
           
            

              
            

           
                 

    
 

          
 

               
             

 

               
        

              
               

                 
                
              

               
  

               
               

              
                 

                
            

                
                

         

       

              
            

                 
         

                 
               

            
               

                
           
            

              
            

           
                 

    

         

               
             

 

1993; Table 2, pg 24). For these two species and six others (Dorosoma cepedianum, Lepomis 
marginatus; Morone mississippiensis, Pimephales promelas, Semotilus thoreauianus, and 
Gambusia affinis) where there was uncertainty as to whether they were native or non-native 
at a given locality, we classified them as questionable. We also encountered some records of 
fish species that were not known to be native at the HUC8 they were found. However, there 
was also no corroborating evidence in the literature (e.g., USGS NAS or fish atlases) or from 
our field knowledge (Benjamin Keck and Xingli Giam) that such a non-native record was 
likely. We interpreted these records as a misidentification or a previously used name for a 
native species. 

Last, based on the HUC6 designations, we assigned whether a fish record pertains to a 
species that is native vs. non-native (or questionable) at the basin level (HUC2 06 Tennessee; 
and HUC4 0513 Cumberland). We classified a species as native to the Tennessee or 
Cumberland basin if it was native to at least one HUC6 within that basin. For example, a 
species will be classified as non-native or questionable to the Tennessee basin if it was not 
recorded as native to any of the HUC6 units within the basin. 

For the analyses in this report, we pooled the questionable records as native. However, this is 
an ongoing database, and we would revisit and revise the statuses of fish records as new 
evidence emerges from the literature or from field observations. 

5.11. Analysis 1 - Trends in non-native fish 

Using fish records with known collection dates (n = 386,828) from both community and 
occurrence datasets, we calculated the number of unique occurrences of non-native fish 
species recorded in the years up to 1979, and in each subsequent five-year period up to 2024 
(i.e., 1979 and before; 1980-1984, 1985-1989…2015-2019, 2020-2024). Each unique 
occurrence is defined by one or more records of a given species sampled at a given stream 
reach (COMID) and date. The aggregation to the stream reach scale (rather than using raw 
program site identifiers or geographic coordinates) is conservative as it guards against 
counting the same fish record multiple times if that record is present in multiple databases 
(e.g., in the event of a fish collection divided into multiple lots and deposited in different 
museums; different monitoring programs collaborating on field sampling but including the 
community sample in their respective databases; and small changes in geographic coordinates 
during data entry and processing that prevents easy detection of such duplicated records). We 
compared these five-yearly unique occurrences of non-native species with the number of 
unique COMID sampling occasions graphically to assess if changes in non-native 
occurrences might be driven at least in part by changes in the frequency of sampling or if 
they reflect real trends. 

5.12. Analysis 2 - Recent range changes of non-native species 

We used fish records with known collection dates (n = 386,828) from both community and 
occurrence datasets to investigate range changes of non-native species over the last ~40 
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years. Our analysis focused on 38 species with non-native (i.e., introduced) occurrences in 
≥10 stream reaches (COMIDs) (Table 4). In this analysis, non-native status was defined at the 
HUC6 level (see 5.9. Assigning native vs. non-native status to fish species). Consistent with 
Analysis 1, a unique occurrence is defined as a unique record of a species on a unique 
COMID on a given day to guard against duplicate records of the same individual(s) sampled 
that is archived in different datasets. In total, there were 335,661 unique occurrences. 

Table 4. Species with non-native occurrences in at least 10 unique stream reaches 
(COMIDs). Non-native (introduced) status was defined at the HUC6 level. nCOMID: the 
number of unique stream reaches (COMIDs) within HUC6 units in which a given species was 
non-native. nCOMID-Yr: the number of unique COMID-year occurrences (e.g., a species 
recorded in one COMID in years 1989, 2006, and 2020 will have 3 unique COMID-year 
occurrences). minYear and maxYear means the earliest and most recent year of record, 
respectively. As an example, redbreast sunfish, Lepomis auritis, had known occurrences in 
2070 stream reaches in our dataset, and 4728 COMID-year occurrences. 

Species nCOMID nCOMID-Yr minYear maxYear 

Lepomis auritus 2070 4728 1934 2024 

Oncorhynchus mykiss 1429 3685 1888 2024 

Salmo trutta 891 2620 1939 2024 

Cyprinus carpio 774 1406 1936 2024 

Perca flavescens 299 595 1955 2024 

Dorosoma petenense 211 274 1948 2024 

Hypophthalmichthys molitrix 175 260 1995 2024 

Morone saxatilis 132 180 1962 2024 

Nocomis leptocephalus 125 182 1941 2024 

Ctenopharyngodon idella 121 179 1978 2024 

Menidia audens 117 176 1990 2022 

Carassius auratus 111 131 1939 2024 

Micropterus coosae 107 142 1940 2024 

Noturus insignis 95 221 1949 2024 

Lepomis gibbosus 88 108 1940 2023 

Notropis texanus 83 212 1953 2022 

Notropis lutipinnis 75 405 1967 2024 

Ameiurus platycephalus 73 133 1977 2023 

Hypophthalmichthys nobilis 61 82 1995 2023 
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Alosa chrysochloris 47 49 1974 2024 

Chrosomus oreas 45 63 1941 2024 

Gambusia holbrooki 43 48 1965 2024 

Ameiurus brunneus 38 121 1990 2023 

Salvelinus fontinalis 37 84 1938 2020 

Alosa pseudoharengus 30 30 1984 2019 

Hypentelium etowanum 25 26 1949 2021 

Cyprinella venusta 21 30 1991 2022 

Salvelinus namaycush 17 20 1977 2023 

Alosa aestivalis 16 20 1992 2022 

Luxilus coccogenis 16 19 1973 2021 

Ameiurus catus 15 18 1977 2008 

Esox niger 15 25 1991 2024 

Strongylura marina 14 16 1990 2017 

Etheostoma fusiforme 13 17 1947 2021 

Mylopharyngodon piceus 12 13 2017 2022 

Esox lucius 11 12 1939 1994 

Moxostoma poecilurum 11 12 1968 2020 

Micropterus henshalli 10 10 2015 2024 

For each of these 38 species (Table 4), we summed the number of unique stream reaches 
(COMID) it occupied in four time periods (before and up to 1979; 1980-1994; 1995-2009; 
2010-2024) within its introduced range. We also calculated the cumulative number of unique 
stream reaches (COMID) that they occupied within its introduced range up to 1979, 1994, 
2009, and 2024. The number of unique reaches represent a minimum bound of the number of 
stream reaches occupied by the species in a given time period whereas the cumulative 
number of unique reaches represent a higher estimate (but not maximal bound) of the number 
of reaches occupied by the species. The number of unique reaches represent known 
observations of the species during each time period; there would be other localities (some 
previously sampled while others never sampled before) that were not sampled during a given 
time period but may nevertheless be occupied by the species. The cumulative number of 
unique reaches represent a higher estimate of the magnitude of potential range expansion of 
an introduced species because it assumes any stream reach occupied by the species in a 
previous time period will remain occupied in future time periods. Yet, this is not a maximal 
bound due to the same reason as discussed before, i.e., that there will be established 
populations that have not yet been detected due to a lack of sampling in those reaches. 

5.13. Analysis 3 - Recent abundance trends of non-native species 
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We used the community dataset to investigate recent trends in the relative abundance of each 
non-native species across its introduced range over the last few decades. We wanted to 
identify the species that are increasing across sites within their introduced ranges and those 
that are decreasing, as well as the strength of evidence associated with the trend. We 
employed a random effects meta-regression approach to combine relative abundance trends in 
each non-native species (across every occupied site in their non-native HUC6s) while taking 
into account the nonindependence among multiple non-native populations within a given 
reach to quantify the mean trend of each species. We used an evidence-based framework 
(Muff et al. 2022) to interpret the strength of evidence of each increasing or decreasing trend 
based on the P-value of the hypothesis test of whether the trend of each species is different 
from zero. Based on this framework, P ≤ 0.001 can be interpreted as very strong evidence for 
a trend; 0.001 < P ≤ 0.01 as strong evidence; 0.01 < P ≤ 0.05 as moderate evidence; 0.05 < P 
≤ 0.1 as weak evidence, and P > 0.1 as no evidence (Muff et al. 2022). 

The relative abundance trend of a given non-native species at a given stream site is 
quantifying by performing a linear regression of the relative abundance (calculated as the 
log-response ratio of the abundance of the non-native species to the abundance of all other 
species within the same community) against year of sampling. Therefore, the trend of a 
non-native species at a given site—change in log[(abundance of the non-native species + 1) / 
(abundance of all other species + 1)] per year—is represented by the coefficient (slope) of the 
year term. A positive coefficient represents an increasing trend over time whereas a negative 
coefficient represents a decreasing trend. We used the year coefficient as the effect size in our 
random effects meta-regression and the squared standard error of the coefficient as its 
sampling variance (Becker & Wu, 2007; Babcock et al. 2017) . We entered species identity as 
a predictor in the meta-regression to estimate individual species-level trends while 
incorporating nonindependence among populations within individual sites. Random effects 
(intercepts) were individual populations (unique species-by-site combinations) and unique 
sites. We included only sampling occasions from March-August and sites (i.e. communities) 
that were sampled during this period in ≥ 4 unique years, over a span of ≥ 10 unique years, 
and with the last year of sampling in 2010 or after (464 sites). Of these 464 sites, 410 sites 
had at least one non-native species. A relative abundance trend was therefore estimated for 
each non-native species present in each of these sites. We used the rma.mv() function in the 
metafor R package (Vietchbauer, 2010) to fit the random effects meta-regression model. 

5.14. Analysis 4 - Climate and land-use change effects on non-native fish abundance 

We focused this analysis on 403 community sampling sites in the Tennessee River basin with 
at least one non-native species. We focused on the Tennessee River basin for this analysis 
because there were only 7 community sampling sites in the Cumberland River. Like in 
Analysis 3, these sites were sampled from March-August in ≥ 4 unique years, over a span of 
≥ 10 unique years, and with the last year of sampling in 2010 or after. In each of these 403 
sites, we calculated temporal trends in the relative richness and abundance of non-native 
species. Non-native status of species were defined based on HUC2 and HUC6 definitions 
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consistent with all analyses in this report. For a given location, a given species was classified 
as whether it was non-native to the HUC2 (entire Tennessee River basin; e.g., species like 
silver carp, H. molitrix, which is non-native to the entire US, or rainbow trout, O. mykiss, 
which is non-native to the Tennessee River basin) of that location or to the HUC6 of that 
location (e.g., a species such as chain pickerel, Esox niger, which is native to the Lower 
Tennessee and Middle-Tennessee Elk but would be classified as a HUC6 non-native in sites 
within the French Broad-Holston). 

We fitted linear regression models to quantify the trend of non-native fish over time in terms 
of their total species richness and total abundance pooled across all species, relative to the 
total species richness and total abundance of native fish species, relatively. Similar to 
Analysis 3, in each sampling occasion at each site, we calculated the log-response ratio of 
non-native to native species richness, as well as the log-response ratio of non-native to native 
total abundance adding a value of 1 to each quantity as continuity correction. At each site, we 
regressed each log-response ratio against year and recorded the coefficient (slope) of the year 
term as the mean change in log[(non-native species richness + 1) / (native species richness + 
1)] or log[(total abundance of all non-native species + 1) / (total abundance of all native 
species + 1)] per year, i.e., the trend of non-native fish in a given in terms of the species 
richness and total abundance. We also recorded the squared standard error of the year 
coefficient as its sampling variance (Becker & Wu, 2007; Babcock et al. 2017) of the trend. 
There was one site in which there was no change in non-native richness through time, 
therefore the fitted slope of 0 had a perfect fit (standard error of zero). For the meta-analysis 
described below, we replaced the standard error of zero with the smallest non-zero standard 
error in the dataset. 

We used the rma.mv() function in metafor R package (Vietchbauer, 2010) to fit random 
effects meta-regression models to identify climate-change and land-cover change related 
variables, along with other environmental and biotic variables, that may potentially drive 
variation in non-native fish trends across the 403 sites. We summarize fixed effects predictor 
variables in Table 5. All predictors were centered and scaled (mean=0, sd=1). We included a 
random intercept for HUC6, which accounts for nonindependence among sites; we 
hypothesized that sites within a given HUC6 may show more similar responses because of 
similarities in the overall species pool as well as more similar physiographic conditions. We 
used AICc (small-sample Akaike Information Criterion) to identify the most parsimonious 
model for statistical inference. Similar to Analysis 3, we used an evidence-based framework 
to interpret effects. Based on this framework, P ≤ 0.001 can be interpreted as very strong 
evidence for a trend; 0.001 < P ≤ 0.01 as strong evidence; 0.01 < P ≤ 0.05 as moderate 
evidence; 0.05 < P ≤ 0.1 as weak evidence, and P > 0.1 as no evidence (Muff et al. 2022). 
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Table 5. Fixed effects predictor variables used to predict relative non-native richness 
and relative non-native abundance trends in meta-regression models. This set of 
variables is a smaller subset of the original variables considered after removing highly 
collinear (|r| > 0.7) variables. Dataset source citations: 1Lafontaine et al. (2019) and section 
5.9.1 of this report ; 2Stream temperature modeling, section 5.8. of this report; 3USGS (2022); 
4We modified the DOR metric proposed by Spinti et al. (2023) to produce local DOR 
(LDOR), which is calculated as local storage divided by annual flow at a stream reach using 
the data provided by Spinti et al. (2023); 4Upstream watershed area is calculated by totalling 
area of focal catchment and all upstream catchments that drain into it (see section 5.4); 5Mean 
native species richness is calculated from the dataset analyzed here. 

Variables Description Hypothesis Source 

MeanFlow_Trend Annual trend in mean monthly flow 
across the span of sampling years 

Change in mean flow may 
benefit non-native species; 
directionality uncertain 

PRMS1 

(this 
study) 

CVFlow_Trend Annual trend in the coefficient of 
variation (CV) of monthly flow 
across the span of sampling years 

Decrease in flow seasonality 
would benefit non-native 
species 

PRMS1 

(this 
study) 

MeanTemp_Trend Annual trend in mean monthly 
March-August water temperature 
across the span of sampling years 

Increase in water temperature 
would benefit non-native 
species 

This study2 

CVFlow_Mean Mean of the CV of monthly flow 
across the span of sampling years 

More seasonal streams have 
less positive non-native trends 

PRMS1 

(this 
study) 

MeanTemp_Mean Mean of mean monthly 
March-August water temperature 
across the span of sampling years 

Warmer streams might be 
more invasible and have more 
positive non-native trends 

This study2 

Tree_Trend Annual trend in upstream watershed 
tree cover across the span of 
sampling years 

Streams with reduction in 
upstream tree cover favor 
non-natives 

LCMAP3 

Tree_Mean Mean upstream watershed tree 
cover across the span of sampling 
years 

Streams with less upstream 
tree cover have poorer water 
quality, and favor non-natives 

LCMAP3 

LDOR A metric of local flow regulation 
modified from Spinti et al. (2023), 
calculated as local water storage 
(Norm_stor) divided by annual flow 
at a stream reach (QC_MA) in the 
NABD dataset provided by Spinti et 
al. (2023) 

Streams that are more 
regulated (store more water 
relative to flow) are more 
lentic and favor non-natives 

Spinti et 
al. (2023) 
(this 
study)4 

logFF A metric of recreational freshwater 
fishing demand at the HUC12 level, 

Streams with higher 
recreational fishing demand 

Davis & 
Darling 
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log-transformed are more likely to experience 
introductions due to bait 
buckets, accessibility, etc. 

(2017) 

logWSArea Total upstream watershed area, 
log-transformed 

Non-native trends may differ 
across the longitudinal 
gradient; directionality 
uncertain 

This study5 

logNativeRich Mean native fish species richness 
across sampling occasions, 
log-transformed 

Native species-rich streams 
might be less invasible due to 
increased biotic resistance 

This study6 

5.15. Analysis 5 - Impact of non-native fish on native fish species 

Based on our discussions with agency partners and collaborators in the project kickoff 
meeting (see section 5.1. Co-production approach), we focus on investigating the potential 
impacts of silver carp (Hypophthalmichthys molitrix), yellowfin shiner (Notropis lutipinnis), 
and mosquitofish (Gambusia affinis and G. holbrooki) on native species. Note that G. affinis 
is classified as questionable in its native-vs-non-native status in our study; however, we 
pooled this species with the unambiguously non-native G. holbrooki because they appear to 
have the same ecological niche and because our partner is interested in the impact of 
mosquitofish in general (section 5.1. Co-production approach). 

For each of the three focal non-native species (1. silver carp; 2. yellowfin shiner; 3; 
mosquitofish comprising the non-native G. holbrooki and the questionable G. affinis), we 
identify all community sampling sites within the Tennessee River basin with records of that 
species. We then identify the 8-digit hydrological unit code (HUC8) drainage units that 
contain all these sampling sites, and select all sites (including those without the focal 
non-native species within the HUC8 units. On each sampling occasion at each site, we 
calculate the relative abundance of the focal non-native species as log[(abundance of the 
focal non-native species + 1) / (abundance of all other species + 1)]. We examined the 
association of this variable (which quantifies the degree of invasion of this species at a given 
site and time) with response variables that appropriately reflect the hypothesized impact of 
invasion. The response variable to examine the impact of silver carp was the number of 
native species because we hypothesized that silver carp invasion would likely result in a 
decline of native species because silver carp is known to alter and degrade stream habitats 
important for native species and that they also compete with native species for food 
resources. The response variable to examine the impact of yellowfin shiner was the richness 
of native Notropis spp. [log (richness+1) transformed because of zeroes] because we 
hypothesize that yellowfin shiner might potentially compete with native congenerics for food 
as they share similar ecological niches. Similarly, we hypothesized that Gambusia spp. would 
compete with Fundulus sp. because of their shared ecological niches. Gambusia affinis has 
been implicated in the decline of the federally endangered barrens topminnow F. julisia 
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(Ennen et al. 2021) and one of our partners requested for us to examine if this was the case 
using our dataset. However, F. julisia was not in any of our community sampling sites; 
therefore we used the richness of Fundulus spp. [log (richness+1) transformed because of 
zeroes] as the response variable to investigate impacts of Gambusia spp. 

We used the glmmTMB() function in the glmmTMB R package (Brooks et al. 2017) to fit 
linear mixed-effects models (LMM) that predict the response (silver carp impact model: 
native species richness; yellowfin shiner impact model: native Notropis species richness; 
mosquitofish impact model: Fundulus relative abundance) as a function of the 
log-transformed relative abundance of the non-native species or species group (LRRAbun) in 
question. Each observation is a sampling occasion at each site. We included 
stream-reach-level environmental covariates: (1) mean of mean monthly flow across the span 
of sampling years (MeanFlow_Mean); (2) mean of the coefficient of variation of monthly 
flow across the span of sampling years (CVFlow_Mean); (3) mean of mean monthly 
March-August water temperature across the span of sampling years (MeanTemp_Mean); (4) 
mean upstream watershed tree cover across the span of sampling years (Tree_Mean); (5) 
local degree of regulation metric (LDOR; Table 5); and (6) log-transformed upstream 
watershed area (logWSArea) to control for site-level effects on native fish species. All 
predictor variables were centered and scaled to mean=0, sd=1. To account for the fact that we 
are analyzing repeated community samples (within each site), we allowed for the coefficient 
of the focal predictor variable LRRAbun to vary across sites. We also included random 
intercepts at the site level and at the HUC8 level whenever sites are located in multiple HUC8 
units. Like in the previous analyses, we used an evidence-based framework to evaluate the 
strength of evidence of a given effect. 

5.16. Analysis 6 - Projecting future range shifts using species distribution modeling 

We modeled the ranges of 37 non-native species with at least 10 records in the TCRB at any 
time, as well as at least 25 records across the entire CONUS between 1980 and 2010. To 
more comprehensively characterize the environmental niche of each species species, we 
supplemented our dataset with additional occurrence records from GBIF for the entire 
CONUS. This broader dataset helps prevent niche truncation, which could otherwise impair 
future predictions. 

We used four commonly employed machine learning techniques to fit SDMs CONUS-wide 
for each species: Random Forest (RF), Maximum Entropy (Maxent), Generalized Boosted 
Regression Models (GBM), and Extreme Gradient Boosting (XGBoost). SDMs were fitted to 
sing the ‘biomod2’ R package (Thuiller et al. 2024) with default settings to establish the 
relationships between CONUS-wide occurrences and pseudoabsences with historical 
environmental conditions (climate, streamflow, land cover, and other factors). To evaluate 
model predictive performance, we conducted both spatial cross-validation and random k-fold 
validation by partitioning occurrences and pseudoabsences into five independent spatial folds 
and five random folds, repeating this process five times for each modeled species. We then 
assessed the performance of each machine learning technique using the mean Area Under the 
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Curve (AUC) for both cross-validation (AUCcross) and k-fold validation (AUCkfold) across 
repetitions and folds. In total, we fitted 100 models per species for each validation type 
(cross-validation and k-fold validation), with 25 models per machine learning technique (five 
repetitions across five folds) to evaluate predictive performance. 

For each non-native species, we retained only machine learning techniques that performed 
moderately well in spatial cross-validation (mean AUCcross ≥ 0.6). If no species performed 
moderately well with any technique, the species was dropped for subsequent analyses. We 
then fitted full SDMs for each technique using all available occurrences to project them onto 
the historical period (1980–2010) and the 24 future climatic scenarios (2035–2065) along the 
whole TCRB. These future scenarios aligned between climate and flow data combine two 
Representative Concentration Pathways (RCPs; 4.5 and 8.5) from 12 General Circulation 
Models (GCMs) [also used for future flow scenarios modeled by Lafontaine & Riley (2023)]. 
In all future scenarios, we applied the same land cover projection from the AB scenario in 
Sohl et al. (2014). 

For each species, we generated an ensemble consensus prediction for both historical and 
future scenarios by weighting the average continuous suitability (ranging from 0 to 1) based 
on AUC values. For future predictions, we averaged projected suitabilities across the 12 
GCMs scenarios for each RCP (4.5 & 8). We used the weighted average threshold across 
cross-validation repetitions that maximized the sum of specificity and sensitivity (maxSSS) 
(Liu et al. 2013, Liu et al. 2016) and then applied a weighted average across techniques to 
classify catchments as suitable (1) or unsuitable (0) in both historical and future scenarios. 

6. PROJECT RESULTS 

6.1. Analysis 1 - Trends in non-native fish 

Up to 1979, there were 51958 total unique occurrences of freshwater fish within the TCRB 
across both community and occurrence datasets. 1146 (2.2%) of these occurrences were of 
fish that were non-native (i.e., introduced) to the HUC6 that their respective sites were 
located (Fig. 2a). In each subsequent five-year period until 2005-2009, there was an increase 
in the number of introduced species occurrences (from 248 occurrences in 1980-1984 to 3401 
occurrences in 2005-2009). However this was also accompanied by an increase in the number 
of native species occurrences (Fig. 1a). Both introduced and native species occurrences 
declined in each successive five-year period from 2005-2009 (3401 introduced occurrences; 
49272 native occurrences) to 2020-2024 (1353 introduced occurrences; 16366 native 
occurrences). Importantly, the proportion of introduced occurrences (out of all occurrences) 
showed a strong increase through time (P < 0.001; R2 = 0.87) (Fig. 2b) 

23 



              
             

                
                

        

 
              

              
              

                 
             

               
                

           
 

             
             

             
                

              
                 

           
               

                 
           

 
 

 

 

              
             

                
                

        

              
              

              
                 

             
               

                
          

             
             

             
                

              
                 

           
               

                 
           

 

 

Fig. 2. Temporal trend in all unique occurrences of introduced fish species. (a) Number 
of unique occurrences of introduced fish species (red) compared with native fish species 
(blue) and (b) trend in the proportion of unique occurrences of introduced species up to the 
year 1979 (the first data point in each panel) and within subsequent five-year periods up to 
2024. Introductions are defined at the HUC6 level. 

We also analyzed the trend in unique occurrences from only the community dataset. The 
rationale is that while using data combined from both occurrence and community datasets can 
inform the trend in all known occurrences of introduced species, any increase in occurrences 
of any group of species might be due in part to biases in sampling and reporting. For 
example, we found a significant increase in the proportion of introduced occurrences through 
time (Fig. 1b). However, this increase may be a result of increased targeting of non-native 
species by sampling in localities they were already known to occur or were suspected to have 
spread to, and therefore an increased collection/reporting of introduced species 

Our community dataset showed a similar increasing trend in both introduced and native 
species occurrences from 1989 and before to each subsequent five-year period to around 
2000-2004 and 2005-2009, followed by a decreasing trend in both groups until 2020-2024 
(Fig. 3a). However, in contrast with the trend for all occurrences, there was no temporal trend 
for the proportion of introduced occurrences (P = 0.78; Fig. 3b). In community samples 
recorded up to 1989, 5% of all occurrences were those of introduced species (163 out of 3491 
total occurrences). In 1990-1994 and 1995-1999, the proportion of introduced occurrences 
peaked at 6.8% and 7.1% respectively, followed by proportions ranging from 5.3% to 5.8% in 
the next 5 five-year time periods. Despite the lack of an overall trend, the last 5 five-year 
time-periods had higher proportions of introduced occurrences than the first period 
(pre-1990). 
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Fig. 3. Temporal trend in unique occurrences of introduced fish species within the 
community dataset only. (a) Number of unique occurrences of introduced fish species (red) 
compared with native fish species (blue) and (b) trend in the proportion of unique 
occurrences of introduced species up to the year 1989 (the first data point in each panel) and 
within subsequent five-year periods up to 2024. Introductions are defined at the HUC6 level. 

6.2. Analysis 2 - Recent range changes of non-native species 

Using our community and occurrence datasets, we examined the change in the number of 
unique stream reaches occupied by 38 non-native species in the past 45 years. These 38 
introduced species comprised 35 species that were not native to any HUC6 within the 
Tennessee or Cumberland basin and 3 species (Alosa chrysochloris, Cyprinella venusta, and 
Esox niger) that were native in some HUC6 units within the Tennessee or Cumberland basin 
but were introduced to others within the same basin. For the latter group, we only analyzed 
range changes within the introduced portion of their range. 

For most introduced species, the number of unique stream reaches continued to increase from 
the pre-1980 period through the subsequent three 15-year time periods ending in 2024 (Fig. 
4). In particular, the largest increase in the number of reaches occupied generally occurred 
between 1994 to 2009, which coincided with the period in which most fish records were 
taken (Figs. 1 and 2). However, our analysis revealed notable species that greatly expanded in 
their range (i.e., number of stream reaches occupied) in the most recent time period 
(2010-2024). The most extreme example is the silver carp, Hypophthalmichthys molitrix, 
which was not recorded pre-1980 and 1980-1994 and occurred in only 5 stream reaches in 
1995-2009 before expanding its range of known occurrences to 175 stream reaches (Table 6). 
The bighead carp, Hypophthalmichthys nobilis, showed similar temporal dynamics. Grass 
carp, Ctenopharyngodon idella, had a longer history of invasion, but nevertheless, continued 
to show accelerating dynamics in the number of stream reaches occupied. Black carp, 
Mylopharyngodon piceus, was found in fewer stream reaches (12) in our dataset; however, 
occurrences in all of these reaches were observed in the most recent time period (2010-2024). 
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Fig. 4. The number of stream reaches (COMID) occupied by introduced fish species 
through time. The panels are arranged in descending sequence of the total number of reaches 
(COMIDs) occupied (see Table 3); Lepomis auritis has occupied the largest number of 
reaches (2070), followed by Onchorhynchus mykiss (1429) and Salmo trutta (891). The 
upper line with solid dot symbols represent the cumulative number of unique stream reaches 
occupied by a given species up to a given time period whereas the lower line with hollow dot 
symbols represent the number of unique stream reaches within each given time period. 
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Fig. 4. continued 
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Fig. 4. Continued (last panel) 
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Table 6. The cumulative number of unique stream reaches (COMID) occupied by the 
four species of non-native Asian up to the years 1979, 1994, 2009, and 2024. 
Species 1979 1994 2009 2024 

Hypophthalmichthys molitrix 0 0 5 175 

Ctenopharyngodon idella 2 11 41 121 

Hypophthalmichthys nobilis 0 0 13 61 

Mylopharyngodon piceus 0 0 0 12 

Accelerating or continued increase in the number of occupied reaches was not limited to 
exotic species like the four carp species discussed above. Species native to the US, but not to 
the TCRB (HUC2 non-natives), e.g., striped bass (Morone saxatilis) and eastern mosquitofish 
(Gambusia holbrooki) showed sustained increase as well. Alabama bass, Micropterus 
henshalli, was not recorded in the TCRB before 2010-2024, but expanded its distribution to 
10 stream reaches in our dataset by the end of 2024. Last, we also noted that brook trout 
(Salvelinus fontinalis; introduced in the Upper Cumberland HUC6 051301 and the Middle 
Tennessee-Elk HUC5 060300)—an example of a species native to some HUC6 in the TCRB 
but not others (HUC6 non-natives)—shows accelerating increase in its non-native range. 

In terms of the increase in unique stream reaches in which a given species was recorded from 
1995 to 2024, L. auritis, O. mykiss, and S. trutta showed the largest increase in reaches 
occupied (1423, 900, 688, respectively; Table 7). In terms of relative (i.e., percent) increase, 
H. molitrix, H. nobilis, M. piceus, Micropterus henshalli, each increased from 0 to 175, 61, 
12, and 10 stream reaches occupied; among species with pre-1995 records, the cumulative 
number of streams occupied by Notropis texanus, Alosa aestivalis, Esox niger, C. idella, 
Cyprinella venusta, Gambusia holbrooki and Ameirus brunneus by 2024 increased by more 
than 5-fold in a 30-year timespan from 1995 to 2024 (Table 7). 

We were interested to examine whether the increase in the number of occupied reaches within 
the last time period (2010-2024) was due to increased sampling in reaches that have not been 
sampled before, which may reflect new discoveries of existing introduced species, or whether 
it actually reflects new populations of non-native species. We therefore chose stream reaches 
that had known species occurrences (therefore, sampled) before 2010 and from 2010-2024, 
and calculated the change in cumulative number of reaches between these two time periods. 
Because we only analyzed sites that were sampled in both time periods, an increase in 
cumulative number of reaches between 2010 to 2024 for a given species would indicate that 
in this time period, the range of that species expanded to stream reaches that did not have 
known occurrences of that species previously (before 2010), reflecting actual spread. 

34 of the 38 non-native species had new occurrences in previously sampled stream reaches in 
their introduced range in 2010-2024 (Table 8), representing an actual expansion of the known 
distributions of these species rather than new discoveries of existing populations. The number 
of reaches occupied by each non-native carp species increased > 2 fold; S. fontinalis 
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increased by 144%; G. holbrooki and S. namaycush increased by 75%; M. saxatilis increased 
by 56% (Table 8). 

Table 7. Change in the cumulative number of unique stream reaches (COMID) occupied 
from 1994 to 2024. 1994 and 2024 represents the cumulative number of COMIDs in which a 
species was recorded by the end of 1994 and 2024 respectively. Increase is the number of 
new stream reaches gained between 1995-2024. FoldIncrease is the relative change in 
cumulative COMIDs between 1995-2024 [(nCOMID2024-nCOMID1994)/nCOMID1994]. The 
table is sorted in descending order from the greatest to the smallest FoldIncrease. 

Species nCOMID1994 nCOMID2024 Increase FoldIncrease 

Hypophthalmichthys molitrix 0 175 175 Inf 

Hypophthalmichthys nobilis 0 61 61 Inf 

Micropterus henshalli 0 10 10 Inf 

Mylopharyngodon piceus 0 12 12 Inf 

Notropis texanus 5 83 78 15.60 

Alosa aestivalis 1 16 15 15.00 

Esox niger 1 15 14 14.00 

Ctenopharyngodon idella 11 121 110 10.00 

Cyprinella venusta 2 21 19 9.50 

Gambusia holbrooki 6 43 37 6.17 

Ameiurus brunneus 6 38 32 5.33 

Menidia audens 21 117 96 4.57 

Moxostoma poecilurum 2 11 9 4.50 

Perca flavescens 64 299 235 3.67 

Strongylura marina 3 14 11 3.67 

Salmo trutta 203 891 688 3.39 

Salvelinus fontinalis 10 37 27 2.70 

Notropis lutipinnis 22 75 53 2.41 

Lepomis auritus 647 2070 1423 2.20 

Micropterus coosae 36 107 71 1.97 

Morone saxatilis 46 132 86 1.87 

Cyprinus carpio 272 774 502 1.85 

Ameiurus platycephalus 27 73 46 1.70 

Oncorhynchus mykiss 529 1429 900 1.70 

Carassius auratus 43 111 68 1.58 

Alosa pseudoharengus 13 30 17 1.31 
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Dorosoma petenense 93 211 118 1.27 

Nocomis leptocephalus 57 125 68 1.19 

Salvelinus namaycush 8 17 9 1.13 

Hypentelium etowanum 12 25 13 1.08 

Ameiurus catus 8 15 7 0.88 

Lepomis gibbosus 48 88 40 0.83 

Luxilus coccogenis 9 16 7 0.78 

Chrosomus oreas 27 45 18 0.67 

Etheostoma fusiforme 8 13 5 0.63 

Noturus insignis 60 95 35 0.58 

Alosa chrysochloris 33 47 14 0.42 

Esox lucius 11 11 0 0.00 

Table 8. Change in the cumulative number of unique stream reaches (COMID) occupied 
from 2010 to 2024 among reaches that were sampled in both pre-2010 and 2010-2024. 
2010 and 2024 represents the cumulative number of COMIDs in which a species was 
recorded by the end of 2010 and 2024 respectively. Increase is the number of new stream 
reaches gained between 2010-2024. FoldIncrease is the relative change in cumulative 
COMIDs between 2010-2024 [(nCOMID2024-nCOMID2010)/nCOMID2010]. The table is sorted 
in descending order from the greatest to the smallest FoldIncrease. 

Species nCOMID1994 nCOMID2024 Increase FoldIncrease 

Mylopharyngodon piceus 0 8 8 Inf 

Micropterus henshalli 0 2 2 Inf 

Hypentelium etowanum 0 1 1 Inf 

Hypophthalmichthys molitrix 1 99 98 98.00 

Hypophthalmichthys nobilis 9 37 28 3.11 

Ctenopharyngodon idella 18 61 43 2.39 

Salvelinus fontinalis 9 22 13 1.44 

Gambusia holbrooki 8 14 6 0.75 

Salvelinus namaycush 4 7 3 0.75 

Morone saxatilis 39 61 22 0.56 

Ameiurus brunneus 11 17 6 0.55 

Perca flavescens 90 139 49 0.54 

Cyprinella venusta 7 10 3 0.43 

Chrosomus oreas 12 17 5 0.42 

Menidia audens 49 69 20 0.41 
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Carassius auratus 35 49 14 0.40 

Oncorhynchus mykiss 579 760 181 0.31 

Notropis texanus 32 42 10 0.31 

Cyprinus carpio 293 383 90 0.31 

Nocomis leptocephalus 43 56 13 0.30 

Micropterus coosae 40 52 12 0.30 

Lepomis auritus 826 1066 240 0.29 

Salmo trutta 388 497 109 0.28 

Dorosoma petenense 54 69 15 0.28 

Lepomis gibbosus 33 42 9 0.27 

Ameiurus platycephalus 30 38 8 0.27 

Luxilus coccogenis 8 10 2 0.25 

Notropis lutipinnis 37 45 8 0.22 

Etheostoma fusiforme 5 6 1 0.20 

Noturus insignis 43 51 8 0.19 

Strongylura marina 7 8 1 0.14 

Esox niger 8 9 1 0.13 

Alosa pseudoharengus 14 15 1 0.07 

Alosa chrysochloris 22 23 1 0.05 

Alosa aestivalis 5 5 0 0.00 

Ameiurus catus 5 5 0 0.00 

Esox lucius 1 1 0 0.00 

Moxostoma poecilurum 3 3 0 0.00 

6.3. Analysis 3 - Recent abundance trends of non-native species 

We analyzed the relative abundance trends in the non-native ranges (HUC6) of 30 species 
that were present in community sampling sites that had ≥ 4 unique sampling years over a time 
span of ≥ 10 unique years, and with the last year of sampling in 2010 or after (n = 410 sites; 
Fig. 5). There were a total of 1071 non-native populations (i.e., 1071 species-by-site 
combinations). The first sampling year in this dataset is in 1982 and the last sampling year is 
2022. Across sites, the median number of unique years of sampling is 5 [interquartile range 
(IQR: 4-7)], the median first year of sampling is 2000 (IQR: 1999-2002), the median last year 
of sampling is 2019 (IQR: 2016-2022), and the median timespan of sampling is 18 years 
(IQR: 16-21). 

There was broad heterogeneity in relative abundance trends across species (Fig. 6).There was 
very strong evidence for increasing trend in the non-native populations of yellowfin shiner 
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(Notropis lutipinnis; P = 0.00004), strong evidence for the increasing trend in blueback 
herring (Alosa aestivalis; P = 0.006) and silver carp (Hypophthalmichthys molitrix; P = 
0.006), and weak evidence for the increasing trend in margined madtom (Noturus insignis; P 
= 0.09). Conversely, we identified very strong evidence for the decreasing trend in common 
carp (Cyprinus carpio; P = 0.000001) and moderate evidence for decreasing trends in 
rainbow trout (Oncorhynchus mykiss; P = 0.000001) and mountain redbelly dace (Chrosomus 
oreas; P = 0.000001). Of the other 23 species with no (inadequate) evidence of a trend due to 
the high uncertainty in the mean effect size (90% CI overlapping with zero), mean effect size 
was positive for 19 species while it was negative for the other 4 species. 

Fig. 5. Sampling sites containing non-native species analyzed in the relative abundance 
trend random effects meta-regression analysis. The number of non-native species (# NN 
species) at a site is represented by the size of points (larger points = more non-native species). 
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Fig. 6. Meta-analysis of the temporal trend in relative abundance of non-native species 
across sites. The effect size is the change in log[(abundance of focal non-native species + 1) / 
(abundance of all other species + 1)] per year at a given site. The mean effect size is denoted 
by the solid point while the error bars represent 90% confidence intervals. Orange points and 
bars represent species with evidence of an increasing relative abundance trend through time; 
blue dots and bars represent species with evidence of decreasing trend. Asterisks represent 
the strength of evidence: **** P ≤ 0.001, very strong evidence; *** 0.001 < P ≤ 0.01, strong 
evidence; ** 0.01 < P ≤ 0.05, moderate evidence; * 0.05 < P ≤ 0.1, weak evidence. 
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6.4. Analysis 4 - Climate and land-use change effects on non-native fish abundance 

We present the results for non-native fish classified at the HUC6 unit level. The top AICc 
meta-regression model that predicts the trend in the relative richness of non-native species 
included the fixed effect predictors: CVFlow_Trend, logFF, and Tree_Mean (Table 9). There 
is strong evidence that sites located in stream reaches with decreased variability in flow tend 
to have an increasing trend of relative richness of non-native species (b = -0.0036; P = 
0.0047). There is also strong evidence that sites located in stream reaches draining an 
upstream watershed with lower tree cover tend to have an increasing trend of relative richness 
of non-native species (b = -0.0036; P = 0.0042). The mean effect of recreation fishing usage 
on relative non-native richness trends were positive; however, there is quite a bit of 
uncertainty around the mean. We therefore conclude that there is no or little (Muff et al. 
2022) evidence of this effect. The rest of the predictor variables listed in Table 5 were not in 
the top model, therefore we conclude that there is no evidence that the relative non-native 
richness trend was associated with any of those excluded variables. 

Table 9. Top AICc meta-regression model predicting the trend in the relative richness of 
non-native species. b: mean coefficient estimate for the predictor variable; s.e.: standard 
error of the mean coefficient; P: P-value of the effect. 
Predictor variables b s.e. P 90% CI 

CVFlow_Trend -0.0036 0.0013 0.0047 -0.0057, -0.0015 

logFF 0.0014 0.0012 0.2273 -0.00052, 0.00339 

Tree_Mean -0.0030 0.0010 0.0042 -0.0047, -0.0013 

In terms of the trend in the relative abundance of non-native species, the top AICc 
meta-regression model provided very strong evidence that sites on streams that drain 
upstream watersheds with lower tree cover tend to have an increasing trend of non-native 
relative abundance (b = -0.015; P = 0.00003) (Table 10). Unexpectedly, there was also 
moderate evidence that streams with upstream watersheds with an increasing tree cover trend 
tend to have increasing non-native relative abundance (b =0.0091; P = 0.012). There was also 
moderate evidence for the negative association between upstream watershed area and 
non-native relative abundance trend (b =-0.0085; P = 0.043). Finally, there was weak 
evidence for negative associations between trend in flow variability (CVFlow_Trend) and 
trend in flow magnitude (MeanFlow_Trend) versus the trend in non-native relative 
abundance (0.05 < P ≤ 0.1). Streams with a decreasing trend in flow variability and a 
decreasing trend in flow magnitude were more likely to increase in non-native relative 
abundance across years. Interestingly, there was weak evidence for the positive association 
between the mean number of native species across sampling occasions and the trend in 
non-native relative abundance (b = 0.0070; P = 0.077). 

Table 10. Top AICc meta-regression model predicting the trend in the relative 
abundance of non-native species. b: mean coefficient estimate for the predictor variable; 
s.e.: standard error of the mean coefficient; P: P-value of the effect. 
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Predictor variables b s.e. P 90% CI 

CVFlow_Mean -0.0053 0.0037 0.1492 -0.0030, 0.0055 

CVFlow_Trend -0.0062 0.0033 0.0621 -0.0113, 0.0007 

MeanFlow_Trend -0.0057 0.0033 0.0835 -0.0112, -0.0003 

Tree_Mean -0.0151 0.0036 0.00003 -0.0211, -0.0091 

Tree_Trend 0.0091 0.0036 0.0123 0.0031, 0.0151 

logWSArea -0.0085 0.0042 0.0428 -0.0155, -0.0016 

logNativeSpp 0.0070 0.0040 0.0772 0.0005, 0.0135 

Our results of the analysis on non-native richness and abundance trends based on a HUC2 
non-native classification were largely consistent with the results above. For relative richness 
trends, there was very strong evidence that streams that are becoming less flow variable have 
more positive non-native relative richness trends; and moderate evidence that watersheds 
with greater tree cover tend to guard against the increase of non-native relative richness. For 
relative abundance trends, there was very strong evidence that watersheds with greater tree 
cover guard against an increase in non-native relative abundance and strong evidence that 
smaller streams (those that drain a smaller upstream watershed area) increased in non-native 
relative abundance. There was moderate evidence that streams that were becoming less 
variable and streams that saw an increase in tree cover over time experienced a greater 
increase in non-native relative abundance. Last there was weak evidence for the association 
between mean native species richness and the trend in non-native relative abundance. 

6.5. Analysis 5 - Impact of non-native fish on native fish species 

Among the 33 sites (n = 154 sampling occasions) within the HUC8s that silver carp, H. 
molitrix, occupied, there was very strong evidence for the negative association between 
number of native fish species recorded in each sampling occasion and the relative abundance 
of silver carp (b = -0.152; P = 3.6 × 10-9) (Table 11). This is after controlling for site-level 
variables and accounting for the repeated measures structure of the data. Of the site-level 
variables, watershed area was very strongly and positively related to the number of native 
fish species (b = 0.343; P = 2.2 × 10-9). 

Table 11. Linear mixed-effects model (LMM) in predicting log(native richness) across 
sites within the HUC8s that silver carp occupied. b: mean coefficient estimate for the 
predictor variable; s.e.: standard error of the mean coefficient; P: P-value of the effect. LDOR 
(local degree of regulation metric) was not included because all sites had a zero value). 
Predictor variables b s.e. P 

LRRAbun -0.152 0.026 3.62 × 10-9 

MeanFlow_Mean -0.024 0.050 0.631 

CVFlow_Mean 0.027 0.024 0.268 
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MeanTemp_Mean -0.028 0.041 0.488 

Tree_Mean 0.033 0.024 0.171 

logWSArea 0.343 0.057 2.22 × 10-9 

Yellowfin shiner, N. lutipinnis, was only present in one HUC8 unit 06010202 in our 
community sampling dataset. Various native Notropis spp. were also present in this HUC8. 
Among the 60 sites (n = 599 sampling occasions) within HUC8 06010202, yellowfin shiner 
relative abundance was not associated with the species richness of native Notropis spp after 
controlling for site-level variables and accounting for the repeated measures structure of the 
data (Table 12). Of the site-level variables, mean temperature from March to August, 
upstream watershed tree cover, and watershed area was positively related to the number of 
native Notropis species (Table 12). 

Table 12. Linear mixed-effects model (LMM) in predicting log(native Notropis 
richness+1) across sites within the HUC8s that yellowfin shiner occupied. b: mean 
coefficient estimate for the predictor variable; s.e.: standard error of the mean coefficient; P: 
P-value of the effect. 
Predictor variables b s.e. P 

LRRAbun -0.024 0.026 0.357 

MeanFlow_Mean -0.028 0.050 0.569 

CVFlow_Mean -0.027 0.032 0.395 

MeanTemp_Mean 0.163 0.048 0.0007 

Tree_Mean 0.127 0.040 0.0016 

LDOR -0.039 0.029 0.180 

logWSArea 0.146 0.067 0.028 

We limited our analysis of the impact of mosquitofish (Gambusia spp.) on topminnow 
species (Fundulus spp.) to the HUC8s within which both groups of species were present. We 
therefore analyzed a total of 291 sites (n = 1686 sampling occasions). We found no evidence 
that the relative abundance of Gambusia spp. was related to the relative richness of Fundulus 
spp. Fundulus richness, instead, was driven by moderate effects of mean flow magnitude, and 
strong effects of mean March-August temperature and watershed tree cover (Table 13). 

Table 13. Linear mixed-effects model (LMM) in predicting log(native Fundulus 
richness+1) across sites within the HUC8s that both Gambusia and Fundulus occupied. 
b: mean coefficient estimate for the predictor variable; s.e.: standard error of the mean 
coefficient; P: P-value of the effect. LDOR was not included because all sites had zero 
values. 
Predictor variables b s.e. P 

LRRAbun 0.0063 0.009 0.479 
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MeanFlow_Mean -0.0737 0.029 0.012 

CVFlow_Mean 0.0051 0.020 0.797 

MeanTemp_Mean 0.0994 0.028 0.00032 

Tree_Mean 0.0626 0.017 0.00031 

logWSArea 0.0426 0.027 0.109 

6.6. Analysis 6 - Projecting future range shifts using species distribution modeling 

The 37 modeled species performed moderately well on average across machine learning 
techniques (mean AUCcross = 0.7, SD AUCcross = 0.05; mean AUCkfold = 0.87, SD AUCkfold = 
0.04). Each species had at least one model that had at least acceptable performance (AUCcross 

>= 0.6) that was consequently used for predicting suitability across TCRB and for analysis of 
changes in habitat suitability Table 14). The SDM approach used here highlights variability in 
species-specific responses to future climate scenarios, as evidenced by changes in catchment 
suitability. Four species (10.1% of those modeled) did not exhibit changes in the total number 
of suitable reaches under RCP 4.5 or 8.5, balancing gains and losses in future suitable 
reaches. This group includes species with a predicted historically low number of suitable 
catchments, such as northern pike (Esox lucius), chain pickerel (Esox niger), grass carp 
(Ctenopharyngodon idella), and pumpkinseed (Lepomis gibbosus) (Fig. 7). 

Table 14. Predicted overall changes in suitable reaches along the TCRB for the 37 
non-native species modeled using SDMs. The change in the total number of suitable 
reaches for future scenarios (RCP 4.5 & RCP 8.5) is calculated by comparing it with the total 
number of catchments predicted to be suitable under historical conditions (1980-2010) and 
future conditions (2035-2065). 

Species Historical RCP 4.5 Change RCP 4.5 
(%) 

RCP 8.5 Change RCP 8.5 
(%) 

Alosa aestivalis 4562 7791 70.78 6273 37.51 

Alosa chrysochloris 4400 3571 -18.84 3462 -21.32 

Alosa 
pseudoharengus 

1183 3 -99.75 0 -100 

Ameiurus brunneus 142 239 68.31 51 -64.08 

Ameiurus catus 888 0 -100 0 -100 
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Ameiurus 
platycephalus 

1171 0 -100 0 -100 

Carassius auratus 1182 0 -100 0 -100 

Chrosomus oreas 3597 10 -99.72 0 -100 

Ctenopharyngodon 
idella 

57 57 0 57 0 

Cyprinella venusta 74 731 887.84 976 1218.92 

Cyprinus carpio 2758 48 -98.26 35 -98.73 

Dorosoma petenense 2373 6085 156.43 6976 193.97 

Esox lucius 0 0 NA 0 NA 

Esox niger 281 281 0 281 0 

Etheostoma fusiforme 312 14347 4498.4 16353 5141.35 

Gambusia holbrooki 33 74943 227000 75712 229330.3 

Hypentelium 
etowanum 

1947 1618 -16.9 1432 -26.45 

Hypophthalmichthys 
molitrix 

1036 770 -25.68 1401 35.23 

Hypophthalmichthys 
nobilis 

1029 6492 530.9 9672 839.94 

Lepomis auritus 16568 62 -99.63 1 -99.99 

Lepomis gibbosus 77 77 0 77 0 

Luxilus coccogenis 12860 3891 -69.74 2220 -82.74 

Menidia audens 2381 8111 240.66 9104 282.36 

Micropterus coosae 2240 845 -62.28 556 -75.18 
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Micropterus henshalli 2687 5687 111.65 5511 105.1 

Morone saxatilis 5235 1334 -74.52 1381 -73.62 

Moxostoma 
poecilurum 

443 125 -71.78 48 -89.16 

Nocomis 
leptocephalus 

914 0 -100 0 -100 

Notropis lutipinnis 2863 0 -100 0 -100 

Notropis texanus 372 1311 252.42 2314 522.04 

Noturus insignis 3465 17 -99.51 0 -100 

Oncorhynchus mykiss 15435 7735 -49.89 5438 -64.77 

Perca flavescens 22 0 -100 0 -100 

Salmo trutta 5752 908 -84.21 492 -91.45 

Salvelinus fontinalis 1799 344 -80.88 98 -94.55 

Salvelinus 
namaycush 

99 256 158.59 433 337.37 

Strongylura marina 414 1053 154.35 1853 347.58 
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Fig. 7. Suitable catchments of stream reaches (COMID) for the grass carp 
(Ctenopharyngodon idella) under different climatic scenarios in the TCRB. The left panel 
shows historical (1980-2010) and future suitable catchments (2035-2065; RCP 4.5 & RCP 
8.5). The right panel indicates current known occurrences in the TCRB (top), and the range 
changes in suitable catchments for RCP 4.5 (middle) and RCP 8.5 (bottom). 

Twelve species (32.4% of those modeled) are predicted to increase their total number of 
suitable reaches in the future. The average increase of suitable reaches for most species is 
+648% (SD=1300) for RCP 4.5 and +823.76% (SD=1476) for RCP 8.5. These figures 
exclude the eastern mosquitofish (G. holbrooki), for which our SDMs projected a very large 
increase of suitable reaches from 33 to >70,000 (which was not surprising given that the 
questionable G. affinis is broadly distributed across the TCRB, and that G. holbrooki is 
thought to have a similar niche to G. affinis). Representative species in this increasing group 
include those that historically colonized downstream mainstems of the TCRB, such as the 
silver carp (Hypophthalmichthys molitrix) and Mississippi silverside (Menidia audens), 
where the expansion of suitable areas occurs further upstream in the mainstem and tributaries, 
with increases of up to 35.23% and 282.36% under RCP 8.5, respectively (Fig. 8). 
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Fig. 8. Suitable catchments of stream reaches (COMID) for the Silver carp 
(Hypophthalmichthys molitrix) under different climatic scenarios in the TCRB. The left 
panel shows historical (1980-2010) and future suitable catchments (2035-2065; RCP 4.5 & 
RCP 8.5). The right panel indicates current known occurrences in the TCRB (top), and the 
range changes in suitable catchments for RCP 4.5 (middle) and RCP 8.5 (bottom). This 
example illustrates the increase in the number of suitable catchments under future conditions. 

An unexpected majority of 22 species (59% of those modeled) are predicted to experience a 
decline in the total number of suitable reaches in the future. These species will lose an 
average of 78.6% (SD=28.6) for the RCP 4.5 and -84.8% (SD=23.6) These species mainly 
include coldwater species that currently occur in the upper elevation reaches of the TCRB, 
such as rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta). Their most 
significant losses in suitable areas occur in the downstream portions of their historically 
suitable ranges, with declines of up to 64% for rainbow trout and 91% of historical suitable 
reaches for brown trout under RCP 8.5 (Fig. 9). 
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Fig. 9. Suitable catchments for the rainbow trout (Oncorhynchus mykiss) under different 
climatic scenarios in the TCRB. TThe left panel shows historical (1980-2010) and future 
suitable catchments (2035-2065; RCP 4.5 & RCP 8.5). The right panel indicates current 
known occurrences in the TCRB (top), and the range changes in suitable catchments for RCP 
4.5 (middle) and RCP 8.5 (bottom). This example shows decreased suitability of catchments 
in the Blue Ridge ecoregion of the upper Tennessee River basin in 2035-2065. 

The SDM approach used here highlights variability in species-specific responses to future 
climate scenarios, as evidenced by changes in catchment suitability. However, it also provides 
insights into generalized patterns of range maintenance for non-native species. For instance, 
bioclimatic variables are the most important predictors of the observed ranges of non-native 
species, along with slope. Other hydrographic variables, as well as land cover and DOR, 
follow bioclimatic variables in importance. Interestingly, hydrological indices rank among the 
predictors with the lowest overall importance (Fig. 10). 
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Fig. 10. Predictor importance across the 37 non-native species with modeled SDMs. Blue 
bars indicate the mean variable importance, while error bars indicate standard deviations 
across species. Bioclimatic data consist of mean annual temperature (mean.bio1), temperature 
seasonality (mean.bio4), annual precipitation (mean.bio12), and precipitation seasonality 
(mean.bio15). Topographic information is represented by slope. Hydrological data including 
total upstream drainage area (totdasqkm), degree of river regulation (DOR) and local degree 
of regulation (LDOR). Soil data encompass soil clay content (CLAYCAT) and depth to 
bedrock (RCKDEPCAT). Land cover data include the percentage of forest cover (PctForest), 
agricultural land (PctAgri), and urban area (PctUrban). Hydrological indices include FL2, 
FH6, MA41, DH16, ML14, MA5, DL18 and TAL1 [see Morder et al. (2023) for definitions]. 

Lastly, we also produced an R script which can incorporate information on the dispersal 
ability of a given non-native species to identify stream reaches (COMID) that are both 
projected to be suitable for the species by our SDMS as well as reachable by the species 
based on its dispersal ability. Our analyses on silver carp (H. molitrix) found that based on its 
dispersal ability of 22.6 km/year (Pretchtel et al. 2018; based on the mean 3-year range), 
99.9% of the stream reaches projected to be suitable in 2035-2065 under RCP 4.5 are also 
reachable by the species, whereas 99.6% of suitable reaches in 2035-2065 under RCP 8.5 are 
estimated to be reachable. 

7. ANALYSIS AND FINDINGS 
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This project generated new information and data on the status of non-native fish species in 
the Tennessee and Cumberland River basins (TCRB). The results of our analyses and the data 
generated by this project fills a crucial knowledge gap in our understanding of the impacts of 
recent climate and land-cover change on fish invasions in the TCRB. They can also help 
inform the management of existing invasive species as well as to prevent novel invasions. 

Based on our discussion and feedback with our federal and state agency partners, we focused 
our project on answering 5 main questions that would be useful to advance the science as 
well as practice of managing the spread and mitigating the impact of invasive fish in the 
TCRB. These questions are: 

1. Which invasive fish species have expanded their distributions over the past 15-30 years? 
2. Which species have increased their abundances in the past 15−30 years? 
3. How does climate- and land-cover-associated changes in stream temperature and flow 

dynamics impact invasions? 
4. How does invasive fish species impact native fish communities? 
5. Which streams are likely to be colonized by which invasive species in the next 30 years? 

For clarity we will summarize our analysis of our results in these sections below. 

1. Which invasive fish species have expanded their distributions over the past 15-30 years? 

We used fish records from both community and occurrence datasets to answer this question. 
The number of stream reaches occupied by non-native fish species has continued to increase 
over the past two 15-year periods (1995-2009 and 2010-2024). It is difficult to ascertain 
whether this expansion in distribution is a result of novel sampling in sites that have never 
been previously sampled, and thus represents merely a detection of a previously established 
population or if it represents a true expansion in distribution. To try to tease these two 
processes apart, we reanalyze the data from streams that have been sampled in the most 
recent 15-year period (2010-2014) as well as years prior to that (pre-2010). Because we only 
included sites that were sampled in both time periods in this new analysis, an increase in the 
cumulative number of stream reaches occupied from pre-2010 to 2010-2024 time periods will 
present actual range expansions of non-native fish species. In this analysis we found that in 
the period 2010-2024, 34 of our focal 38 non-native species (non-native fish that were 
recorded in at least 10 unique stream reaches) occupied new stream reaches. Among species 
with the largest percentage increase in the number of streams occupied from pre-2010 to 
2010-2024 and with at least five new stream reaches were the four species of Asian carp 
(Hypophthalmichthys molitrix, H. nobilis, Ctenopharyngodon idella, and Mylopharyngodon 
piceus), brook trout (Salvelinus fontinalis) outside of its native range in the Blue Ridge 
ecoregion, eastern mosquitofish (Gambusia holbrooki), striped bass (Morone saxatilis). 

2. Which species have increased their abundances in the past 15−30 years? 

45 



              
              

                 
                   

                 
              

             
              

              
              

                
               

 
               

             
               

                   
               

            
             
              
              

              
       

 
            

   
 

             
               

              
            

              
               

                
               

            
                

            
               
                 

                 
        

 

 

              
              

                 
                   

                 
              

             
              

              
              

                
               

               
             

               
                   
               

            
             
              
              

              
       

           
   

             
               

              
            

              
               

                
               

            
                

            
               
                 

                 
        

 

We analyzed the relative abundance trends of 30 non-native species present in sites sampled 
in our community dataset that have been sampled by the same monitoring agency or 
organization at around the same time of the year (March to August) that had ≥ 4 unique 
sampling years over a time span of ≥ 10 unique years, and with the last year of sampling in 
2010 or after. The focal region for this analysis is the TCRB. There was wide heterogeneity in 
the relative abundance trends among the 30 species. There was very strong evidence for 
yellowfin shiner (Notropis lutipinnis) increasing in abundance relative to other species in the 
community. There was also strong evidence for silver carp (H. molitrix) and blueback herring 
(Alosa aestivalis) increasing in relative abundance, as well as weak evidence for the increase 
in margined madtom (Noturus insignis). In addition to these four species, 19 other species 
have a mean relative abundance trend that is positive, but the variation across sites was high 
enough that there is inadequate evidence to include that it represents an actual positive trend. 

It was exciting that we found very strong evidence for a positive abundance trend in 
yellowfin shiners. In the co-production process, one of our agency partners remarked that 
based on their field experience, they think that yellowfin shiner has been increasing and they 
wanted the project team to confirm if it was true with the data, and if so, what would their 
impact be on native species. We can confirm with quantitative evidence based on data from 
many different sources and monitoring programs that our partner’s anecdotal observations are 
correct. Conversely, our partners were also concerned about the abundance trend of redbreast 
sunfish (Lepomis auritis) and wanted us to investigate this. Our results showed that redbreast 
sunfish are increasing in their relative abundance on average across sites, but there was 
relatively large uncertainty around the mean trend, therefore the data did not show evidence 
that there was an overall positive trend. 

3. How does climate- and land-cover-associated changes in stream temperature and flow 
dynamics impact invasions? 

We focused our community-level analysis in the Tennessee River basin because the large 
majority of our community sampling sites were in this basin. Here, we identified climate and 
land-cover change associated drivers of the trends in the relative richness and abundance of 
non-native species across different stream reaches. We found that streams that were 
experiencing a decreasing trend in flow variability through time and streams that had lower 
tree cover in their upstream watershed were more likely to experience an increase in the 
richness of non-native species relative to native species through time. In terms of trends in the 
relative abundance of non-native fish, we detected a similar effect of a decreasing trend in 
flow variability and lower watershed-scale tree cover being associated with an increasing 
trend in non-native fish. We also found reduction in flow magnitudes to be associated with an 
increasing trend in non-native relative fish abundance. Interestingly, for the abundance trend, 
there was a moderate association between an increasing trend in tree cover with an increasing 
trend in non-native fish. This result is unexpected and warrants a closer look at the data to 
examine whether this effect was being driven by one or a few sites other factors may have 
resulted in an increase in non-native fish abundance. 
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4. How does invasive fish species impact native fish communities? 

Based on our discussions with project partners from federal and state agencies, we focused on 
investigating the impacts of silver carp (H. molitrix), yellowfin shiner (N. lutipinnis), and 
mosquitofish (Gambusia spp.) on native fish. We found very strong evidence for the negative 
association between silver carp and native fish richness, after controlling for other 
environmental factors that may drive native richness. This suggests that silver carp likely has 
a negative impact on native fish species. Previous research has shown that silver carp 
competes with native species for food resources and reduces stream habitat quality for native 
fish species. Further research has to be performed to ascertain the directionality of this effect 
as it is also possible that streams with fewer native species may be more invasible and/or 
easily established by silver carp. In the case of yellowfin shiner and mosquitofish, we tested 
for the association between the relative abundance of these species with the richness of 
putative native competitors (yellowfin shiner: native Notropis spp.; mosquitofish: Fundulus 
spp.), We found no evidence for both of these associations, indicating that there is little 
impact of yellowfin shiner and mosquitofish on their respective native competitors in terms 
of reducing the species richness of their competing native species groups. However, richness 
declines are only one of the many possible impacts. The impact of these non-native species 
on the abundance of individual native competitors might be a more relevant measure of 
impact. However, we were not able to compare the relative abundance of these non-native 
species to the relative abundance of their native competitors due to statistical artefacts that 
would be introduced in such an analysis. Future work can focus on testing whether these 
non-native species were excluding certain native species from stream reaches using 
co-occurrence (Giam & Olden 2016) or similar analyses. 

5. Which streams are likely to be colonized by which invasive species in the next 30 years? 

To answer this question, we conducted species distribution modeling (SDM) of non-native 
species. We produced maps of habitat suitability under current (1980-2010) climatic and 
land-cover conditions as well as under future (2035-2065) projected climate and land-cover 
scenarios. Warmwater- and mainstem-adapted species that are currently invading in the lower 
reaches of the TCRB such as silver carp (Hypophthalmichthys molitrix; particularly under 
RCP 8.5) and bighead carp (H. nobilis, under RCP 4.5 and 8.5) are likely to increase their 
distribution up the mainstem and large tributaries of the Tennessee and Cumberland Rivers, 
upstream from their current distribution. By contrast, non-native species in the Upper 
Tennessee and French Broad-Holston regions that are currently occupying cooler streams in 
the Blue Ridge ecoregion, such as rainbow trout (Onchorynchus mykiss) and yellowfin shiner 
(Notropis lutipinnis) are projected to see declines in climatically suitable habitat as streams 
warm and/or precipitation patterns change. 

8. CONCLUSIONS AND RECOMMENDATIONS 

Our study indicates that climate change and land-cover change will continue to affect stream 
ecosystems both directly and through their effects on non-native fish. We found that 
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non-native fish have continued to invade new stream reaches in the TCRB over the past 
15-30 years, expanding their distributions. Many fish have also increased their abundances 
relative to other species in their community. State and federal agencies should focus on 
species that have expanded their ranges and increased their local abundances most rapidly in 
recent years. These species include the four species of Asian carp, which has increased both 
its range and local abundance greatly in the last 15 years. Other species that deserve attention 
include weed shiner (Notropis texanus), blueback herring (Alosa aestivalis), striped bass 
(Morone saxatilis), eastern mosquitofish (Gambusia holbrooki), and yellowfin shiner 
(Notropis lutipinnis). 

Based on our analyses on community-level trends in relative non-native richness and 
abundance, it is clear that maintaining a high level of tree cover in the watershed guards 
against increases in richness and abundance of non-native relative to native species. To 
protect against invasive species and their potential impacts of native, policymakers should 
aim to maintain a high tree cover in the upstream watersheds. We also found that climate 
change may increase non-native species richness and abundance in streams that become less 
variable in their month-to-month flow. Therefore, managers and practitioners should focus on 
monitoring the populations of existing non-native species and preventing new introductions 
into streams with flow regimes that are becoming less variable and seasonal. 

Based on our impact analysis, increasing silver carp abundance was linked to lower native 
fish species richness. We understand that silver carp, along with the three other Asian carp 
species, are current priorities for control by state and federal agencies within the TCRB. Our 
research provides evidence on the negative impact of silver carp, thus providing further 
support for controlling and reducing its population to the maximum extent possible. 

Lastly, we provided current and future habitat suitability maps for non-native fish species. 
State and federal agencies can use the maps to determine which locations to sample and 
monitor for expanding populations of non-native fish based on current known records and 
suitable habitat areas that are proximal to current populations. 

Our work is ongoing. This project provided our team with a unique opportunity to work with 
partners and collaborators from different agencies in learning about the most pressing 
knowledge gaps and questions related to invasive fish management. Importantly, this 
collaboration also resulted in the compilation of a large fish occurrence and community 
sampling database in the Southeast. This compiled dataset is currently being used in a 
NSF-funded project to incorporate bioenergetics in determining fish distributional limits. We 
have also used this dataset to organize a K-12 teacher professional development workshop at 
the Tennessee Science Teachers Association annual meeting in 2023. 

We will continue to build this dataset to further understand how climate change, land-cover 
change, and fish invasions interact to affect native species. We have started preliminary work 
on understanding how these stressors interact (additively or synergistically, etc.) to affect 
range and abundance shifts of native species. Using the data we have compiled, we also have 

48 



              
           
 

 
     

 
                

               
           

            
             
             

              
               

             
             

 
          

 
              
              

  
             

     
            

        
 

    
 

              
              
          

        
             

             
         

 
            

                
             
  

 

 

              
           
 

     

                
               

           
            
             
             

              
               

             
             

          

              
              

  
             

     
            

        

    

              
              
          

        
             

             
         

            
                

             
  

 

plans to build species distribution models to understand how distributions of fish species of 
greatest conservation concern (SGCN) would change under future climate and land-cover 
change. 

9. MANAGEMENT APPLICATIONS AND PRODUCTS 

We generated new scientific knowledge and data products that can be applied and used in the 
management of invasive fish species. Our list of non-native species and their rates of range 
expansion and abundance increase can inform monitoring and eradication efforts conducted 
by agencies. By identifying drivers of non-native richness across fish communities, agencies 
and researchers can design programs that target (reduce) the effect of important variables 
such as maintaining high tree cover in important watersheds. Last, we generated habitat 
suitability maps that agencies can use to monitor and target enforcement in locations where 
non-native fish are likely to spread to and occupy under future climates. All these represent 
new scientific knowledge that has improved our understanding of invasive fish species, and 
will inform current and future fish monitoring and management efforts in the Southeast. 

The products we deliver in our project are as follows: 

1. PRMS streamflow data for the Tennessee River basin disaggregated at the COMID grain 
2. Modelled stream temperature data for the Tennessee and Cumberland River basins at the 

COMID grain 
3. Fish modeling results (habitat suitability maps for present, 1980-2010, and the future, 

2035-2065 under different climate scenarios) 
4. Example R code for species distribution modelling include identifying suitable stream 

reaches (COMIDs) that are reachable by a species 

10. OUTREACH AND COMMUNICATION 

We organized a project kickoff meeting in July 2021 where we presented our preliminary 
research questions, and preliminary summaries of the data and some analyses to our project 
partners and collaborators from Tennessee Valley Authority, Alabama Department of 
Environmental Management, USGS, Conservation Fisheries Inc. and Mainspring 
Conservation Trust as well as academic institutions University of Alabama and University of 
Tennessee, Knoxville. From this meeting, we were able to further fine-tune our research 
questions to meet the informational needs of our stakeholders. 

We also worked with project cooperator, Jacob LaFontaine, and his hydrological modelling 
team at the USGS South Atlantic Water Science center in a 3-hour online workshop where we 
worked towards adapting the PRMS model to produce streamflow outputs tailored toward our 
project needs. 
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Members of the project team also introduced the project and described the research questions 
and methodology, and data compilation efforts undertaken in this project in several seminars 
given at professional meetings as well as academic settings. These seminars include: 

1. Giam X. 2021. Conserving fish biodiversity under climate change in the Tennessee 
River Basin. Tennessee River Basin Network (TRBN) Annual Meeting 2021. Online. 

2. Giam X. 2021. Projecting freshwater fish responses to climate change. Departmental 
Seminar Series, Warnell School of Forestry and Natural Resources, University of 
Georgia. 

We also presented preliminary results of our analyses in this project as well as related 
analyses using the data compiled in the course of this project at ecology conferences: 

3. Giam X. et al. 2023. Multidecadal effects of climate and land-use change on stream fish 
communities in the southeastern US. Ecological Society of America Annual Meeting 
2023, Portland, OR. Contributed talk. 

4. Giam X., Herrera-R. G., Keck B. 2024. Distributional range shifts of fish species in the 
Tennessee and Cumberland river basins. Ecological Society of America Annual 
Meeting 2024, Long Beach, CA. Poster. 

Data compiled in the course of this project has also been used for the educational outreach 
and professional development of K-12 teachers. We used fish community data compiled in 
this project along with other datasets (e.g., lake ice and temperature) to demonstrate example 
lesson plans to integrating data in teaching climate science, freshwater ecology and 
ecosystem ecology: 

5. Aydeniz M., Giam X. 2023. Engaging Students in Scientific Inquiry and Computational 
Thinking through Local Fish Investigations: A Hands-On Inquiry Lesson. Tennessee 
Science Teachers Association Annual Meeting 2023. 3-hr in person workshop. 

Last, we most recently presented results from a previous version of our analyses of this 
project in a SE CASC Science Seminar in October 2024. 

6. Giam X. 2024. Climate and land-use change impacts on the distribution and abundance 
of non-native fish in the Tennessee and Cumberland River Basins with Xingli Giam. SE 
CASC Science Seminar Series. October 23 2024. 

We are currently preparing multiple manuscripts for submission to several peer-reviewed 
journals. 
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	2. PUBLIC SUMMARY 
	 
	The Southeastern USA is extremely rich in aquatic biodiversity, which includes native fish species such as brook trout, largemouth bass, and smallmouth bass that are important for recreational fisheries and to local economies. This region is also home to a large number of native species that may be less well-known to the public but nevertheless are of great conservation concern due to their small range and population sizes. In particular, the Tennessee and Cumberland river basins (TCRB) are among the most b
	 
	3. PROJECT SUMMARY 
	 
	Climate change and land-cover change are major stressors to biota in aquatic ecosystems. The Southeastern USA is an aquatic biodiversity hotspot among temperate regions globally. Aquatic invasive species are increasing in the Southeast. Because they have the potential to negatively impact the freshwater ecosystems of this region and the unique native biota that these ecosystems support, state and federal agencies are focused on limiting the spread of existing non-native species, mitigating their impacts on 
	 
	Our analyses found that the four species of Asian carp (silver carp Hypophthalmichthys molitrix; grass carp Ctenopharyngodon idella; bighead carp Hypophthalmichthys nobilis; and black carp Mylopharyngodon piceus) are among the non-native species that showed the greatest rate of increase in the number of stream catchments occupied about the past ~30 years. Species that are native to the US but not to the TCRB such as striped bass (Morone saxatilis) and eastern mosquitofish (Gambusia holbrooki) showed sustain
	 
	So what climate and land-cover change-related ecological mechanism(s) may have driven changes in total abundances, as well as richness of non-native fish, relative to the total abundances and richness of native fish? We found evidence that decreasing month-to-month variation in stream flow through time (i.e., flow becoming less seasonal) was associated with an increase in the relative total abundance and richness of non-native fish across sampling sites. In addition, streams that drain an upstream watershed
	 
	Our project was the first to examine invasion dynamics (i.e,, changes in the spatial distribution and local abundances) of non-native fish species and project future locations that may become suitable for the spread of these species in the biologically important TCRB. By identifying non-native species that are increasing in occupied watersheds and/or abundance, our results can inform monitoring and eradication efforts conducted by agencies. By identifying the ecological mechanisms underlying increasing non-
	 
	4. PURPOSE AND OBJECTIVES 
	 
	The Southeastern USA is a highly dynamic region that has experienced rapid climate and land-cover change over the past half-century (Vose et al. 2017; Troia et al. 2019; Costanza et al. 2020). Both climate and land-cover change are expected to continue into the future (Terrando et al. 2014; Vose et al. 2017). Annual mean temperature is projected to increase by 1.9-2.4°C by mid-century. We would also expect more frequent and severe precipitation events, along with drier summers (Vose et al. 2017). Urban land
	 
	Climate and land-cover change is an important and pressing issue in the Southeast because of the unique and rich biodiversity it supports. In particular, the Southeast is globally important for freshwater biodiversity conservation because it is home to a diverse freshwater fauna, many species of which are highly range-restricted and found nowhere else. For fish, the Southeast contains nearly 80% of all fish species found in the US and Canada, including many found only in one or a few watersheds (Elkins et a
	 
	As climate and land-cover change continues into the future, an increase in air temperature, changing precipitation patterns, and land-cover change will likely interact to increase stream temperature, alter streamflow patterns, and stream habitat quality. Recent studies have examined how these changes may impact species communities and the distributions of native fish (Troia et al. 2019; Troia & Giam 2019; Comte et al. 2022). Less well-studied is the effect of climate and land-cover change on another importa
	 
	As invasions of non-native aquatic species accelerate in the Southeast (Mangiante et al. 2018), state and federal agencies are working to limit the spread of existing non-native species, mitigate their impacts, and prevent future invasions (e.g., Tennessee Wildlife Resources Agency, undated; US Fish & Wildlife Service, 2015). A region-wide study that examines the effect of climate change on invasive fish and their impacts on native fish communities in the TCRB can provide important information to state and 
	abundances in the past 15−30 years? (3) How does climate- and land-cover-associated 
	changes in stream temperature and flow dynamics impact invasions? (4) How does invasive fish species impact native fish communities? (5) Which streams are likely to be colonized by which invasive species in the next 30 years? 
	 
	In our research, we have met our original objectives and goals by answering the questions listed above (see sections 6-8). In particular, we identified non-native fish species that have expanded their distributions over the last ~30 years, focusing on species that have accelerated in terms of their distribution increase over the last 15 years (e.g., the four Asian carp species). We also used a meta-analytic approach to synthesize relative abundance information on each non-native species at every site in its
	 
	At the project kickoff meeting, in our discussion with agency partners and collaborators, we leveraged their field knowledge and experience to identify which non-native fish species we should be focusing on in our research. We also asked them which non-native species are of particular interest or are management priorities for them. We also asked them about what information about these species would help inform their management of these species. Based on their answers (see section 5.1 Co-production approach)
	 
	5. ORGANIZATION AND APPROACH 
	 
	5.1. Co-production approach  
	 
	We designed and implemented this project using a co-production approach that incorporates the fish ecology and management expertise, field experience and knowledge, and data collected by collaborators and partners (comprising natural resource managers, fisheries biologists, conservation biologists, research hydrologists) from federal corporations and agencies (TVA, USGS), state natural resources/fisheries agencies (Tennessee Wildlife Resources Agency, NC Department of Environmental Quality, KY Department fo
	 
	5.2 The Tennessee and Cumberland River Basins (TCRB) 
	 
	Our research focuses on the Tennessee River basin [Watershed Boundary Dataset (WBD) 2-digit hydrological unit code (HUC2) 05] and the Cumberland River basin (4-digit hydrological unit code (HUC4) 0513) (Fig. 1). The Tennessee River basin spans 7 states (Virginia, North Carolina, Tennessee, Georgia, Alabama, Mississippi, and Kentucky) and drains a total of 105,950 km2 of land area. The headwaters of the Tennessee River basin originate in the mountains of the Appalachian-Blue Ridge forest ecoregion in southwe
	 
	Like the Tennessee River, the Cumberland River is a tributary of the Ohio River. It spans Kentucky and Tennessee, and drains a total land area of 46,390 km2. The Cumberland River comprises two main sections, the Upper Cumberland (HUC6 051301) and the Lower Cumberland (HUC6 051302). The headwaters and tributaries of the Upper Cumberland originate in southwestern Kentucky in the Cumberland Plateau. Important river systems in the Upper Cumberland include South Fork Cumberland, Obey, and Caney Fork. Downstream 
	 
	Fig. 1. Map of the Tennessee and Cumberland River basins (TCRB). HUC6 units are color-coded: pink hues indicate HUC6 units within the Tennessee River basin and grey hues indicate HUC6 units within the Cumberland River basin. Grey lines are state lines and blue lines are major streams and rivers within the TCRB. Thicker lines represent stream reaches that drain a greater upstream catchment area (i.e, more “downstream” reaches). 
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	5.3. Fish data 
	 
	We compiled two main types of fish data in the TCRB: (i) fish community monitoring data (hereafter, community data) and (ii) fish occurrence data. Community data are collected by fish community monitoring programs in which the objective is to obtain a representative sample of the fish community at a given location on a given day. The sampling protocol and method/gear may differ across programs and among sites within a program. Sampling protocols include IBI sampling, CPUE sampling and n-pass electrofishing 
	 
	Occurrence data indicate the existence of a given species in a given location and time as evidenced by museum specimens (GBIF and University of Tennessee Etnier Ichthyological Collection [UTEIC]), material citations (e.g., citations of materials or specimens in taxonomic papers describing a new species), human observation (research-grade records provided by iNaturalist via Global Biodiversity Information Facility [GBIF]), and GBIF records that were classified as “Occurrence” (which includes general occurren
	 
	P
	For all data, we checked and corrected typographical errors in locality and geographical coordinates. We also standardized the taxonomy across the different datasets. We followed 
	Integrated Taxonomic Information System (ITIS; 
	www.itis.gov
	www.itis.gov

	) taxonomy for most species 
	except for newly described species e.g., Percina freemanorum, Aphredoderus gibbosus, Forbesichthys papilliferus, where we followed Catalog of Fishes. We excluded (i) fish records that are not identified to the species-level; (ii) hybrids; and (iii) marine species (as defined by FishBase; www.fishbase.org). Below we summarize the fish community (Table 1) and fish occurrence (Table 2) datasets we have compiled for our analyses. 

	 
	Table 1. Fish community datasets. Year range denotes the first and last year of sampling. Nrecord: total number of records (each record is the abundance of a given species found in a unique sampling occasion). Nsample: total number of sampling occasions. NCOMID: number of stream reaches (each stream reach is a unique COMID in the National Hydrography Dataset Plus (NHDPlus) v21 National Seamless Geodatabase) sampled by each program. 
	 
	 
	 
	Table 2. Fish occurrence datasets. Year range denotes the first and last year of a recorded occurrence in each dataset. Nrecord is the total number of records (each record is a given species observed to be occurring at a given location and time). Ncomid represents the number of stream reaches (each stream reach is a unique COMID in the NHDPlus v21 National Seamless Geodatabase) associated with records in each dataset. 
	 
	 
	 
	5.4. Stream network geospatial data 
	 
	Our analyses are conducted at the stream reach (and the associated catchment) spatial grain as defined by the NHDPlus v21 National Seamless Geodatabase. We overlaid fish community and occurrence data with the catchment layer of the NHDPlus v21 National Seamless Geodatabase to identify the stream reach (COMID) from which each fish community and fish species occurrence was taken. We only considered COMIDs that are associated with a NHDPlus v21 flowline in our analyses, thus we excluded sinks (catchments that 
	 
	We used functions from the R packages ‘nhdplusTools’ (Blodgett and Johnson, 2023) and ‘hydroloom’ (Blodgett, 2023) to identify the upstream catchments that contribute to each catchment. For a given focal catchment, the set of all upstream catchments together with the focal catchment constitutes its full upstream watershed (sensu Hill et al., 2016 and the StreamCat dataset; hereafter, the watershed scale). We use upstream catchment data to accumulate streamflow for each catchment (see 5.9. Streamflow data) a
	5.5. Land-cover data 
	 
	We used different sets of land-cover data for different analyses to maximize consistency with the temporal range of the fish datasets used in each analysis as well as to ensure that input datasets used in each analysis is internally consistent. For example, the USGS LCMAP data (USGS, 2022) was used in the fish community analysis (Analysis 4) because its temporal coverage (1985-2021) coincided with the fish community data that we have compiled. Likewise, the Sohl et al. (2014) land-cover dataset was used to 
	5.5.1. USGS LCMAP data - recent community change analysis (5.14. Analysis 4) 
	We used land-cover data from the USGS Land Change Monitoring, Assessment, and Projection (LCMAP) Collection v1.3, which includes eight main cover classifications over CONUS: Tree Cover, Developed, Grass/Shrub, Cropland, Water, Wetland, Snow/Ice, and Barren (USGS, 2022). For each stream reach (COMID) in the TCRB (and surrounding basins, See Stream Temperature Data for details), we calculated the percentage of the associated catchment occupied by each land-cover type for each year during the historical period
	5.5.2. Sohl land-cover data - species distribution modelling analysis (5.16. Analysis 6) 
	We used annual historical (1890-2010) and future projections (2035-2065) for land cover classes from Sohl et al. (2014). For historical data, we used a combination of observed (1980-2005) and forecasted (2006-2010) land-cover from the AB scenario to maintain consistency with the calibration of streamflow Lafontaine & Riley (2003). For each COMID, we averaged the percent coverage of each land-cover class for each period: historical and future.  
	5.6. Climatic data 
	 
	As in the case of land-cover data described above, we used different sets of climatic data to maximize consistency with the temporal range of the fish datasets used in each analysis and to ensure that input datasets used in each analysis are internally consistent.  
	 
	5.6.1. gridMet climatic data - recent community change analysis (5.14. Analysis 4) 
	 
	gridMET provides daily precipitation, as well as minimum and maximum temperature, at ~4 km resolution from 1979 to the present for CONUS (Abatzoglou, 2013). We retrieved daily time series of these climatic variables from 154 monitored reaches across the Southeastern USA. from May 2017 to December 2020, corresponding to each logger monitoring stream water temperature. These data served as the primary input for building a water temperature model to analyze fish community-level changes. 
	 
	5.6.2. Maurer et al. (2002) climatic data - species distribution modelling analysis (5.16. Analysis 6) 
	P
	Maurer et al. (2002) provide daily and monthly downscaled climate projections at a ⅛-degree resolution for CONUS. While the initial publication covers data from 1950 to 2000, subsequent expansions include historical observed data up to 2010 and future projections 
	extending up to 150 years for multiple scenarios (available at:
	 
	 

	https://gdo-dcp.ucllnl.org/downscaled_cmip_projections/dcpInterface.html
	https://gdo-dcp.ucllnl.org/downscaled_cmip_projections/dcpInterface.html

	). 

	For the SDMs analysis, we extracted daily minimum and maximum temperatures, as well as precipitation, for the period 1980–2010 as the historical baseline and for the future scenario (2035–2065) using the Bias-Corrected Constructed Analogs V2 (BCCAv2) dataset from the Coupled Model Intercomparison Project Phase 5 (CMIP5). The future scenarios included two Representative Concentration Pathways (RCPs; 4.5 and 8.5) from 12 General Circulation Models (GCMs) [also used for future flow scenarios modeled by Lafonta
	5.7. Other environmental data 
	In addition to the land-cover and climatic data described above, we used a variety of data that describe the physical environment and geomorphology of the stream reach and its associated catchment and watershed. For example, we used mean % clay, mean water table depth, mean bedrock depth, base flow index, elevation, watershed area data from StreamCat (Hill et al., 2016). We also calculated a metric of northness (the extent to which the catchment is facing north as a measure of solar radiation intensity) fro
	 
	5.8. Stream temperature data 
	We used the ranger package in R to calibrate random forest models to predict maximum daily water temperature across the TCRB under historical conditions. We modeled the daily maximum temperature obtained from 154 monitored reaches (i.e., COMID) from May 2017 to December 2020, spanning nine sub-basins at the HUC8 level (167,714 temperature 
	We used the ranger package in R to calibrate random forest models to predict maximum daily water temperature across the TCRB under historical conditions. We modeled the daily maximum temperature obtained from 154 monitored reaches (i.e., COMID) from May 2017 to December 2020, spanning nine sub-basins at the HUC8 level (167,714 temperature 
	measurements) using stream temperature logger data from 
	Troia et al. (2019)
	Troia et al. (2019)

	 and USGS 
	NWIS within the TCRB and adjacent drainages. We employed a set of 18 reach and upstream catchment scale predictors, including climatic, land cover, soil and hydrographic predictors annual land cover (Table 3). To select the best climatic proxies for maximum water temperature, we evaluated their lagged correlations with maximum air temperature and mean precipitation over average conditions for 1-7 days. The highest average correlations across the 154 stations with maximum air temperature and precipitation ar

	Table 3. Climatic, land cover, and hydrographic variables considered for stream temperature modeling. We tested for potential collinearity issues among this initial set of variables to select a final set of 14 variables (|r| < 0.7) for inclusion as model predictors. 
	Table 3. Climatic, land cover, and hydrographic variables considered for stream temperature modeling. We tested for potential collinearity issues among this initial set of variables to select a final set of 14 variables (|r| < 0.7) for inclusion as model predictors. 
	Dataset source citations: 1
	Abatzoglou (2013
	Abatzoglou (2013

	); 2USGS (2022); 3Hill et al. (2016); 4NHDPlusv2 
	National Seamless Geodatabase (https://www.epa.gov/waterdata/nhdplus-national-data) 

	To identify the best combination of hyperparameters in random forest fitting (node size, mtry, and sample fraction), we evaluated 125 candidate models with contrasting and different combinations of these parameters using all available data for training (node size: 2, 4, 6, 8, 10, 14, mtry: 2, 4, 6, 8, 10 and 14, and sample fraction: 0.2,0.4, 0.6, 0.8 and 1). For each model, we set the number of trees to 150 (10 times the number of predictors) and allowed resampling with replacement. We measured the goodness
	Subsequently, we assessed the predictive performance of the top 10% of candidate models (n = 12) identified through hyperparameter tuning using a k-fold spatial cross-validation approach. Each top candidate model was trained nine times, with observations from the stations in each HUC8 omitted one at a time for testing. We quantified predictive performance by calculating RMSE, MAE, and R² using predictions from the testing datasets. The best-performing model in the spatial cross-validation (RMSE = 2.032°C, M
	5.9. Streamflow data 
	 
	5.9.1. 1985-2021 PRMS flow data - recent community change analysis (5.14. Analysis 4) 
	 
	Historical streamflow data for 1980–2021 were obtained from simulations using the Precipitation Runoff Modeling System (PRMS) v5.1.0, coupled with the USGS National Hydrologic Model Infrastructure (NHMI). PRMS was calibrated independently for the TCRB using climate forcings from gridMET (1985–2022) and dynamic land cover data from LCMAP v1.3. We estimated surface imperviousness annually (1985–2022) at each COMID using the National Land Cover Dataset (NLCD) Surface Imperviousness Product (2001–2021, availabl
	PRMS simulations yielded daily outflow values for relatively large-sized Hydrological Response Units (HRUs), from which we calculated the average monthly outflow for each HRU. We then downscaled monthly streamflow at the HRU spatial grain to the local catchment (COMID) spatial grain based on spatial intersections between HRU and COMID, proportionally disaggregating HRU outflows according to the relative areas of each intersection. Since a COMID may intersect multiple HRUs, we summed outflow values from each
	5.9.2. Historical and future PRMS flow data - species distribution modelling analysis (5.16. Analysis 6) 
	 
	For SDMs analysis, we used PRMS v5.1.0 simulations for historic (1980–2010) and future (2035-2065), calibrated by LaFontaine & Riley (2023) with climate forcings from Maurer et al. (2002) and land cover data from Sohl et al. (2014) for the conterminous USA. The streamflow downscaling process followed the same approach as above, from individual HRU outflows to the streamflow at individual stream reaches (COMID) via the steps described above in 5.8.1.: spatial intersections of HRU with COMID, proportional dis
	 
	5.10. Assigning native vs. non-native status to fish species 
	 
	P
	For each fish record, we assigned whether the species is native or non-native to the HUC6 (6-digit hydrological unit code) within which the locality of the fish record is embedded. There are seven HUC6 units in the TCRB: two in the Cumberland basin (051301 Upper Cumberland and 051302 Lower Cumberland) and five in the Tennessee basin (060101 French Broad-Holston; 060102 Upper Tennessee; 060200 Middle Tennessee-Hiwassee; 060300 Middle Tennessee-Elk; 060400 Lower Tennessee). We made native vs. non-native assig
	from USGS Nonindigenous Aquatic Species (NAS) website (
	https://nas.er.usgs.gov/
	https://nas.er.usgs.gov/

	), fish 
	atlases (e.g., Etnier and Starnes, 1993; Tracy et al. 2020), the Tennessee Aquarium 
	Conservation Institute (TNACI) Freshwater Information Network (
	https://tnacifin.com/
	https://tnacifin.com/

	), 
	NatureServe Explorer (
	https://explorer.natureserve.org/
	https://explorer.natureserve.org/

	), species descriptions and taxonomic 
	revisions, and expert assessment by Xingli Giam and Benjamin Keck (University of Tennessee, Knoxville). There were a small number of records in which there was no strong evidence or consensus if the species was actually native or non-native to the HUC6 they were sampled. For example, Etnier & Starnes (1993, on pg. 200) described the distribution and status of the golden shiner, Notemigonus crysoleucas, as “Probably rare or absent from east and middle Tennessee prior to reservoir construction, but now establ

	 
	Last, based on the HUC6 designations, we assigned whether a fish record pertains to a species that is native vs. non-native (or questionable) at the basin level (HUC2 06 Tennessee; and HUC4 0513 Cumberland). We classified a species as native to the Tennessee or Cumberland basin if it was native to at least one HUC6 within that basin. For example, a species will be classified as non-native or questionable to the Tennessee basin if it was not recorded as native to any of the HUC6 units within the basin. 
	 
	For the analyses in this report, we pooled the questionable records as native. However, this is an ongoing database, and we would revisit and revise the statuses of fish records as new evidence emerges from the literature or from field observations. 
	 
	5.11. Analysis 1 - Trends in non-native fish 
	 
	Using fish records with known collection dates (n = 386,828) from both community and occurrence datasets, we calculated the number of unique occurrences of non-native fish species recorded in the years up to 1979, and in each subsequent five-year period up to 2024 (i.e., 1979 and before; 1980-1984, 1985-1989…2015-2019, 2020-2024). Each unique occurrence is defined by one or more records of a given species sampled at a given stream reach (COMID) and date. The aggregation to the stream reach scale (rather tha
	 
	5.12. Analysis 2 - Recent range changes of non-native species 
	 
	We used fish records with known collection dates (n = 386,828) from both community and occurrence datasets to investigate range changes of non-native species over the last ~40 years. Our analysis focused on 38 species with non-native (i.e., introduced) occurrences in ≥10 stream reaches (COMIDs) (Table 4). In this analysis, non-native status was defined at the HUC6 level (see 5.9. Assigning native vs. non-native status to fish species). Consistent with Analysis 1, a unique occurrence is defined as a unique r
	 
	Table 4. Species with non-native occurrences in at least 10 unique stream reaches (COMIDs). Non-native (introduced) status was defined at the HUC6 level. nCOMID: the number of unique stream reaches (COMIDs) within HUC6 units in which a given species was non-native. nCOMID-Yr: the number of unique COMID-year occurrences (e.g., a species recorded in one COMID in years 1989, 2006, and 2020 will have 3 unique COMID-year occurrences). minYear and maxYear means the earliest and most recent year of record, respect
	 
	For each of these 38 species (Table 4), we summed the number of unique stream reaches (COMID) it occupied in four time periods (before and up to 1979; 1980-1994; 1995-2009; 2010-2024) within its introduced range. We also calculated the cumulative number of unique stream reaches (COMID) that they occupied within its introduced range up to 1979, 1994, 2009, and 2024. The number of unique reaches represent a minimum bound of the number of stream reaches occupied by the species in a given time period whereas th
	5.13. Analysis 3 - Recent abundance trends of non-native species 
	 
	We used the community dataset to investigate recent trends in the relative abundance of each non-native species across its introduced range over the last few decades. We wanted to identify the species that are increasing across sites within their introduced ranges and those that are decreasing, as well as the strength of evidence associated with the trend. We employed a random effects meta-regression approach to combine relative abundance trends in each non-native species (across every occupied site in thei
	 
	The relative abundance trend of a given non-native species at a given stream site is quantifying by performing a linear regression of the relative abundance (calculated as the log-response ratio of the abundance of the non-native species to the abundance of all other species within the same community) against year of sampling. Therefore, the trend of a non-native species at a given site—change in log[(abundance of the non-native species + 1) / (abundance of all other species + 1)] per year—is represented by
	 
	5.14. Analysis 4 - Climate and land-use change effects on non-native fish abundance 
	 
	We focused this analysis on 403 community sampling sites in the Tennessee River basin with at least one non-native species. We focused on the Tennessee River basin for this analysis because there were only 7 community sampling sites in the Cumberland River. Like in Analysis 3, these sites were sampled from March-August in ≥ 4 unique years, over a span of ≥ 10 unique years, and with the last year of sampling in 2010 or after. In each of these 403 sites, we calculated temporal trends in the relative richness 
	 
	We fitted linear regression models to quantify the trend of non-native fish over time in terms of their total species richness and total abundance pooled across all species, relative to the total species richness and total abundance of native fish species, relatively. Similar to Analysis 3, in each sampling occasion at each site, we calculated the log-response ratio of non-native to native species richness, as well as the log-response ratio of non-native to native total abundance adding a value of 1 to each
	 
	We used the rma.mv() function in metafor R package (Vietchbauer, 2010) to fit random effects meta-regression models to identify climate-change and land-cover change related variables, along with other environmental and biotic variables, that may potentially drive variation in non-native fish trends across the 403 sites. We summarize fixed effects predictor variables in Table 5. All predictors were centered and scaled (mean=0, sd=1). We included a random intercept for HUC6, which accounts for nonindependence
	 
	 
	Table 5. Fixed effects predictor variables used to predict relative non-native richness and relative non-native abundance trends in meta-regression models. This set of variables is a smaller subset of the original variables considered after removing highly 
	Table 5. Fixed effects predictor variables used to predict relative non-native richness and relative non-native abundance trends in meta-regression models. This set of variables is a smaller subset of the original variables considered after removing highly 
	collinear (|r| > 0.7) variables. Dataset source citations: 1Lafontaine et al.
	 (
	 (

	2019) and section 
	5.9.1 of this report ; 2Stream temperature modeling, section 5.8. of this report; 3USGS (2022); 4We modified the DOR metric proposed by Spinti et al. (2023) to produce local DOR (LDOR), which is calculated as local storage divided by annual flow at a stream reach using the data provided by Spinti et al. (2023); 4Upstream watershed area is calculated by totalling area of focal catchment and all upstream catchments that drain into it (see section 5.4); 5Mean native species richness is calculated from the data

	 
	 
	 
	5.15. Analysis 5 - Impact of non-native fish on native fish species 
	 
	Based on our discussions with agency partners and collaborators in the project kickoff meeting (see section 5.1. Co-production approach), we focus on investigating the potential impacts of silver carp (Hypophthalmichthys molitrix), yellowfin shiner (Notropis lutipinnis), and mosquitofish (Gambusia affinis and G. holbrooki) on native species. Note that G. affinis is classified as questionable in its native-vs-non-native status in our study; however, we pooled this species with the unambiguously non-native G.
	 
	For each of the three focal non-native species (1. silver carp; 2. yellowfin shiner; 3; mosquitofish comprising the non-native G. holbrooki and the questionable G. affinis), we identify all community sampling sites within the Tennessee River basin with records of that species. We then identify the 8-digit hydrological unit code (HUC8) drainage units that contain all these sampling sites, and select all sites (including those without the focal non-native species within the HUC8 units. On each sampling occasi
	 
	We used the glmmTMB() function in the glmmTMB R package (Brooks et al. 2017) to fit linear mixed-effects models (LMM) that predict the response (silver carp impact model: native species richness; yellowfin shiner impact model: native Notropis species richness; mosquitofish impact model: Fundulus relative abundance) as a function of the log-transformed relative abundance of the non-native species or species group (LRRAbun) in question. Each observation is a sampling occasion at each site. We included stream-
	 
	5.16. Analysis 6 - Projecting future range shifts using species distribution modeling 
	We modeled the ranges of 37 non-native species with at least 10 records in the TCRB at any time, as well as at least 25 records across the entire CONUS between 1980 and 2010. To more comprehensively characterize the environmental niche of each species species, we supplemented our dataset with additional occurrence records from GBIF for the entire CONUS. This broader dataset helps prevent niche truncation, which could otherwise impair future predictions. 
	We used four commonly employed machine learning techniques to fit SDMs CONUS-wide for each species: Random Forest (RF), Maximum Entropy (Maxent), Generalized Boosted Regression Models (GBM), and Extreme Gradient Boosting (XGBoost). SDMs were fitted to sing the ‘biomod2’ R package (Thuiller et al. 2024) with default settings to establish the relationships between CONUS-wide occurrences and pseudoabsences with historical environmental conditions (climate, streamflow, land cover, and other factors). To evaluat
	For each non-native species, we retained only machine learning techniques that performed moderately well in spatial cross-validation (mean AUCcross ≥ 0.6). If no species performed moderately well with any technique, the species was dropped for subsequent analyses. We then fitted full SDMs for each technique using all available occurrences to project them onto the historical period (1980–2010) and the 24 future climatic scenarios (2035–2065) along the whole TCRB. These future scenarios aligned between climat
	For each species, we generated an ensemble consensus prediction for both historical and future scenarios by weighting the average continuous suitability (ranging from 0 to 1) based on AUC values. For future predictions, we averaged projected suitabilities across the 12 GCMs scenarios for each RCP (4.5 & 8). We used the weighted average threshold across cross-validation repetitions that maximized the sum of specificity and sensitivity (maxSSS) (Liu et al. 2013, Liu et al. 2016) and then applied a weighted av
	6. PROJECT RESULTS 
	 
	6.1. Analysis 1 - Trends in non-native fish 
	 
	Up to 1979, there were 51958 total unique occurrences of freshwater fish within the TCRB across both community and occurrence datasets. 1146 (2.2%) of these occurrences were of fish that were non-native (i.e., introduced) to the HUC6 that their respective sites were located (Fig. 2a). In each subsequent five-year period until 2005-2009, there was an increase in the number of introduced species occurrences (from 248 occurrences in 1980-1984 to 3401 occurrences in 2005-2009). However this was also accompanied
	 
	 
	Fig. 2. Temporal trend in all unique occurrences of introduced fish species. (a) Number of unique occurrences of introduced fish species (red) compared with native fish species (blue) and (b) trend in the proportion of unique occurrences of introduced species up to the year 1979 (the first data point in each panel) and within subsequent five-year periods up to 2024. Introductions are defined at the HUC6 level. 
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	We also analyzed the trend in unique occurrences from only the community dataset. The rationale is that while using data combined from both occurrence and community datasets can inform the trend in all known occurrences of introduced species, any increase in occurrences of any group of species might be due in part to biases in sampling and reporting. For example, we found a significant increase in the proportion of introduced occurrences through time (Fig. 1b). However, this increase may be a result of incr
	 
	Our community dataset showed a similar increasing trend in both introduced and native species occurrences from 1989 and before to each subsequent five-year period to around 2000-2004 and 2005-2009, followed by a decreasing trend in both groups until 2020-2024 (Fig. 3a). However, in contrast with the trend for all occurrences, there was no temporal trend for the proportion of introduced occurrences (P = 0.78; Fig. 3b). In community samples recorded up to 1989, 5% of all occurrences were those of introduced s
	 
	 
	Fig. 3. Temporal trend in unique occurrences of introduced fish species within the community dataset only. (a) Number of unique occurrences of introduced fish species (red) compared with native fish species (blue) and (b) trend in the proportion of unique occurrences of introduced species up to the year 1989 (the first data point in each panel) and within subsequent five-year periods up to 2024. Introductions are defined at the HUC6 level. 
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	6.2. Analysis 2 - Recent range changes of non-native species 
	 
	Using our community and occurrence datasets, we examined the change in the number of unique stream reaches occupied by 38 non-native species in the past 45 years. These 38 introduced species comprised 35 species that were not native to any HUC6 within the Tennessee or Cumberland basin and 3 species (Alosa chrysochloris, Cyprinella venusta, and Esox niger) that were native in some HUC6 units within the Tennessee or Cumberland basin but were introduced to others within the same basin. For the latter group, we
	 
	For most introduced species, the number of unique stream reaches continued to increase from the pre-1980 period through the subsequent three 15-year time periods ending in 2024 (Fig. 4). In particular, the largest increase in the number of reaches occupied generally occurred between 1994 to 2009, which coincided with the period in which most fish records were taken (Figs. 1 and 2). However, our analysis revealed notable species that greatly expanded in their range (i.e., number of stream reaches occupied) i
	Fig. 4. The number of stream reaches (COMID) occupied by introduced fish species through time. The panels are arranged in descending sequence of the total number of reaches (COMIDs) occupied (see Table 3); Lepomis auritis has occupied the largest number of reaches (2070), followed by Onchorhynchus mykiss (1429) and Salmo trutta (891). The upper line with solid dot symbols represent the cumulative number of unique stream reaches occupied by a given species up to a given time period whereas the lower line wit
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	Fig. 4. continued 
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	Fig. 4. Continued (last panel) 
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	Table 6. The cumulative number of unique stream reaches (COMID) occupied by the four species of non-native Asian up to the years 1979, 1994, 2009, and 2024. 
	 
	Accelerating or continued increase in the number of occupied reaches was not limited to exotic species like the four carp species discussed above. Species native to the US, but not to the TCRB (HUC2 non-natives), e.g., striped bass (Morone saxatilis) and eastern mosquitofish (Gambusia holbrooki) showed sustained increase as well. Alabama bass, Micropterus henshalli, was not recorded in the TCRB before 2010-2024, but expanded its distribution to 10 stream reaches in our dataset by the end of 2024. Last, we a
	 
	In terms of the increase in unique stream reaches in which a given species was recorded from 1995 to 2024, L. auritis, O. mykiss, and S. trutta showed the largest increase in reaches occupied (1423, 900, 688, respectively; Table 7). In terms of relative (i.e., percent) increase, H. molitrix, H. nobilis, M. piceus, Micropterus henshalli, each increased from 0 to 175, 61, 12, and 10 stream reaches occupied; among species with pre-1995 records, the cumulative number of streams occupied by Notropis texanus, Alo
	 
	We were interested to examine whether the increase in the number of occupied reaches within the last time period (2010-2024) was due to increased sampling in reaches that have not been sampled before, which may reflect new discoveries of existing introduced species, or whether it actually reflects new populations of non-native species. We therefore chose stream reaches that had known species occurrences (therefore, sampled) before 2010 and from 2010-2024, and calculated the change in cumulative number of re
	 
	34 of the 38 non-native species had new occurrences in previously sampled stream reaches in their introduced range in 2010-2024 (Table 8), representing an actual expansion of the known distributions of these species rather than new discoveries of existing populations. The number of reaches occupied by each non-native carp species increased > 2 fold; S. fontinalis increased by 144%; G. holbrooki and S. namaycush increased by 75%; M. saxatilis increased by 56% (Table 8). 
	 
	Table 7. Change in the cumulative number of unique stream reaches (COMID) occupied from 1994 to 2024. 1994 and 2024 represents the cumulative number of COMIDs in which a species was recorded by the end of 1994 and 2024 respectively. Increase is the number of new stream reaches gained between 1995-2024. FoldIncrease is the relative change in cumulative COMIDs between 1995-2024 [(nCOMID2024-nCOMID1994)/nCOMID1994]. The table is sorted in descending order from the greatest to the smallest FoldIncrease. 
	 
	 
	Table 8. Change in the cumulative number of unique stream reaches (COMID) occupied from 2010 to 2024 among reaches that were sampled in both pre-2010 and 2010-2024. 2010 and 2024 represents the cumulative number of COMIDs in which a species was recorded by the end of 2010 and 2024 respectively. Increase is the number of new stream reaches gained between 2010-2024. FoldIncrease is the relative change in cumulative COMIDs between 2010-2024 [(nCOMID2024-nCOMID2010)/nCOMID2010]. The table is sorted in descendin
	 
	 
	6.3. Analysis 3 - Recent abundance trends of non-native species 
	 
	We analyzed the relative abundance trends in the non-native ranges (HUC6) of 30 species that were present in community sampling sites that had ≥ 4 unique sampling years over a time span of ≥ 10 unique years, and with the last year of sampling in 2010 or after (n = 410 sites; Fig. 5). There were a total of 1071 non-native populations (i.e., 1071 species-by-site combinations). The first sampling year in this dataset is in 1982 and the last sampling year is 2022. Across sites, the median number of unique years
	 
	There was broad heterogeneity in relative abundance trends across species (Fig. 6).There was very strong evidence for increasing trend in the non-native populations of yellowfin shiner (Notropis lutipinnis; P = 0.00004), strong evidence for the increasing trend in blueback herring (Alosa aestivalis; P = 0.006) and silver carp (Hypophthalmichthys molitrix; P = 0.006), and weak evidence for the increasing trend in margined madtom (Noturus insignis; P = 0.09). Conversely, we identified very strong evidence for
	 
	Fig. 5. Sampling sites containing non-native species analyzed in the relative abundance trend random effects meta-regression analysis. The number of non-native species (# NN species) at a site is represented by the size of points (larger points = more non-native species). 
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	Fig. 6. Meta-analysis of the temporal trend in relative abundance of non-native species across sites. The effect size is the change in log[(abundance of focal non-native species + 1) / (abundance of all other species + 1)] per year at a given site. The mean effect size is denoted by the solid point while the error bars represent 90% confidence intervals. Orange points and bars represent species with evidence of an increasing relative abundance trend through time; blue dots and bars represent species with ev
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	6.4. Analysis 4 - Climate and land-use change effects on non-native fish abundance 
	 
	We present the results for non-native fish classified at the HUC6 unit level. The top AICc meta-regression model that predicts the trend in the relative richness of non-native species included the fixed effect predictors: CVFlow_Trend, logFF, and Tree_Mean (Table 9). There is strong evidence that sites located in stream reaches with decreased variability in flow tend to have an increasing trend of relative richness of non-native species (b = -0.0036; P = 0.0047). There is also strong evidence that sites loc
	 
	Table 9. Top AICc meta-regression model predicting the trend in the relative richness of non-native species. b: mean coefficient estimate for the predictor variable; s.e.: standard error of the mean coefficient; P: P-value of the effect.  
	 
	In terms of the trend in the relative abundance of non-native species, the top AICc meta-regression model provided very strong evidence that sites on streams that drain upstream watersheds with lower tree cover tend to have an increasing trend of non-native relative abundance (b = -0.015; P = 0.00003) (Table 10). Unexpectedly, there was also moderate evidence that streams with upstream watersheds with an increasing tree cover trend tend to have increasing non-native relative abundance (b =0.0091; P = 0.012)
	 
	Table 10. Top AICc meta-regression model predicting the trend in the relative abundance of non-native species. b: mean coefficient estimate for the predictor variable; s.e.: standard error of the mean coefficient; P: P-value of the effect.  
	 
	Our results of the analysis on non-native richness and abundance trends based on a HUC2 non-native classification were largely consistent with the results above. For relative richness trends, there was very strong evidence that streams that are becoming less flow variable have more positive non-native relative richness trends; and moderate evidence that watersheds with greater tree cover tend to guard against the increase of non-native relative richness. For relative abundance trends, there was very strong 
	 
	6.5. Analysis 5 - Impact of non-native fish on native fish species 
	 
	Among the 33 sites (n = 154 sampling occasions) within the HUC8s that silver carp, H. molitrix, occupied, there was very strong evidence for the negative association between number of native fish species recorded in each sampling occasion and the relative abundance of silver carp (b = -0.152; P = 3.6 × 10-9) (Table 11). This is after controlling for site-level variables and accounting for the repeated measures structure of the data. Of the site-level variables, watershed area was very strongly and positivel
	 
	Table 11. Linear mixed-effects model (LMM) in predicting log(native richness) across sites within the HUC8s that silver carp occupied. b: mean coefficient estimate for the predictor variable; s.e.: standard error of the mean coefficient; P: P-value of the effect. LDOR (local degree of regulation metric) was not included because all sites had a zero value). 
	 
	Yellowfin shiner, N. lutipinnis, was only present in one HUC8 unit 06010202 in our community sampling dataset. Various native Notropis spp. were also present in this HUC8. Among the 60 sites (n = 599 sampling occasions) within HUC8 06010202, yellowfin shiner relative abundance was not associated with the species richness of native Notropis spp after controlling for site-level variables and accounting for the repeated measures structure of the data (Table 12). Of the site-level variables, mean temperature fr
	 
	Table 12. Linear mixed-effects model (LMM) in predicting log(native Notropis richness+1) across sites within the HUC8s that yellowfin shiner occupied. b: mean coefficient estimate for the predictor variable; s.e.: standard error of the mean coefficient; P: P-value of the effect. 
	 
	We limited our analysis of the impact of mosquitofish (Gambusia spp.) on topminnow species (Fundulus spp.) to the HUC8s within which both groups of species were present. We therefore analyzed a total of 291 sites (n = 1686 sampling occasions). We found no evidence that the relative abundance of Gambusia spp. was related to the relative richness of Fundulus spp. Fundulus richness, instead, was driven by moderate effects of mean flow magnitude, and strong effects of mean March-August temperature and watershed
	 
	Table 13. Linear mixed-effects model (LMM) in predicting log(native Fundulus richness+1) across sites within the HUC8s that both Gambusia and Fundulus occupied. b: mean coefficient estimate for the predictor variable; s.e.: standard error of the mean coefficient; P: P-value of the effect. LDOR was not included because all sites had zero values. 
	 
	 
	6.6. Analysis 6 - Projecting future range shifts using species distribution modeling 
	The 37 modeled species performed moderately well on average across machine learning techniques (mean AUCcross  = 0.7, SD AUCcross  = 0.05; mean AUCkfold  = 0.87, SD AUCkfold = 0.04). Each species had at least one model that had at least acceptable performance (AUCcross  >= 0.6) that was consequently used for predicting suitability across TCRB and for analysis of changes in habitat suitability Table 14). The SDM approach used here highlights variability in species-specific responses to future climate scenari
	Table 14. Predicted overall changes in suitable reaches along the TCRB for the 37 non-native species modeled using SDMs. The change in the total number of suitable reaches for future scenarios (RCP 4.5 & RCP 8.5) is calculated by comparing it with the total number of catchments predicted to be suitable under historical conditions (1980-2010) and future conditions (2035-2065). 
	 
	 
	Fig. 7. Suitable catchments of stream reaches (COMID) for the grass carp (Ctenopharyngodon idella) under different climatic scenarios in the TCRB. The left panel shows historical (1980-2010) and future suitable catchments (2035-2065; RCP 4.5 & RCP 8.5). The right panel indicates current known occurrences in the TCRB (top), and the range changes in suitable catchments for RCP 4.5 (middle) and RCP 8.5 (bottom). 
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	Twelve species (32.4% of those modeled) are predicted to increase their total number of suitable reaches in the future. The average increase of suitable reaches for most species is +648% (SD=1300) for RCP 4.5 and +823.76% (SD=1476) for RCP 8.5. These figures exclude the eastern mosquitofish (G. holbrooki), for which our SDMs projected a very large increase of suitable reaches from 33 to >70,000 (which was not surprising given that the questionable G. affinis is broadly distributed across the TCRB, and that 
	Fig. 8. Suitable catchments of stream reaches (COMID) for the Silver carp (Hypophthalmichthys molitrix) under different climatic scenarios in the TCRB. The left panel shows historical (1980-2010) and future suitable catchments (2035-2065; RCP 4.5 & RCP 8.5). The right panel indicates current known occurrences in the TCRB (top), and the range changes in suitable catchments for RCP 4.5 (middle) and RCP 8.5 (bottom). This example illustrates the increase in the number of suitable catchments under future condit
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	An unexpected majority of 22 species (59% of those modeled) are predicted to experience a decline in the total number of suitable reaches in the future. These species will lose an average of 78.6% (SD=28.6) for the RCP 4.5 and -84.8% (SD=23.6) These species mainly include coldwater species that currently occur in the upper elevation reaches of the TCRB, such as rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta). Their most significant losses in suitable areas occur in the downstream portions
	 
	Fig. 9. Suitable catchments for the rainbow trout (Oncorhynchus mykiss) under different climatic scenarios in the TCRB. TThe left panel shows historical (1980-2010) and future suitable catchments (2035-2065; RCP 4.5 & RCP 8.5). The right panel indicates current known occurrences in the TCRB (top), and the range changes in suitable catchments for RCP 4.5 (middle) and RCP 8.5 (bottom). This example shows decreased suitability of catchments in the Blue Ridge ecoregion of the upper Tennessee River basin in 2035
	P
	Figure
	 

	 
	The SDM approach used here highlights variability in species-specific responses to future climate scenarios, as evidenced by changes in catchment suitability. However, it also provides insights into generalized patterns of range maintenance for non-native species. For instance, bioclimatic variables are the most important predictors of the observed ranges of non-native species, along with slope. Other hydrographic variables, as well as land cover and DOR, follow bioclimatic variables in importance. Interest
	 
	Fig. 10. Predictor importance across the 37 non-native species with modeled SDMs. Blue bars indicate the mean variable importance, while error bars indicate standard deviations across species. Bioclimatic data consist of mean annual temperature (mean.bio1), temperature seasonality (mean.bio4), annual precipitation (mean.bio12), and precipitation seasonality (mean.bio15). Topographic information is represented by slope. Hydrological data including total upstream drainage area (totdasqkm), degree of river reg
	P
	Figure
	 

	Lastly, we also produced an R script which can incorporate information on the dispersal ability of a given non-native species to identify stream reaches (COMID) that are both projected to be suitable for the species by our SDMS as well as reachable by the species based on its dispersal ability. Our analyses on silver carp (H. molitrix) found that based on its dispersal ability of 22.6 km/year (Pretchtel et al. 2018; based on the mean 3-year range), 99.9% of the stream reaches projected to be suitable in 203
	 
	7. ANALYSIS AND FINDINGS 
	 
	This project generated new information and data on the status of non-native fish species in the Tennessee and Cumberland River basins (TCRB). The results of our analyses and the data generated by this project fills a crucial knowledge gap in our understanding of the impacts of recent climate and land-cover change on fish invasions in the TCRB. They can also help inform the management of existing invasive species as well as to prevent novel invasions. 
	 
	Based on our discussion and feedback with our federal and state agency partners, we focused our project on answering 5 main questions that would be useful to advance the science as well as practice of managing the spread and mitigating the impact of invasive fish in the TCRB. These questions are: 
	 
	1. Which invasive fish species have expanded their distributions over the past 15-30 years?  
	2. Which species have increased their abundances in the past 15−30 years? 
	3. How does climate- and land-cover-associated changes in stream temperature and flow dynamics impact invasions? 
	4. How does invasive fish species impact native fish communities? 
	5. Which streams are likely to be colonized by which invasive species in the next 30 years? 
	 
	For clarity we will summarize our analysis of our results in these sections below. 
	 
	1. Which invasive fish species have expanded their distributions over the past 15-30 years?  
	 
	We used fish records from both community and occurrence datasets to answer this question. The number of stream reaches occupied by non-native fish species has continued to increase over the past two 15-year periods (1995-2009 and 2010-2024). It is difficult to ascertain whether this expansion in distribution is a result of novel sampling in sites that have never been previously sampled, and thus represents merely a detection of a previously established population or if it represents a true expansion in dist
	 
	2. Which species have increased their abundances in the past 15−30 years? 
	 
	We analyzed the relative abundance trends of 30 non-native species present in sites sampled in our community dataset that have been sampled by the same monitoring agency or organization at around the same time of the year (March to August) that had ≥ 4 unique sampling years over a time span of ≥ 10 unique years, and with the last year of sampling in 2010 or after. The focal region for this analysis is the TCRB. There was wide heterogeneity in the relative abundance trends among the 30 species. There was ver
	 
	It was exciting that we found very strong evidence for a positive abundance trend in yellowfin shiners. In the co-production process, one of our agency partners remarked that based on their field experience, they think that yellowfin shiner has been increasing and they wanted the project team to confirm if it was true with the data, and if so, what would their impact be on native species. We can confirm with quantitative evidence based on data from many different sources and monitoring programs that our par
	 
	3. How does climate- and land-cover-associated changes in stream temperature and flow dynamics impact invasions? 
	 
	We focused our community-level analysis in the Tennessee River basin because the large majority of our community sampling sites were in this basin. Here, we identified climate and land-cover change associated drivers of the trends in the relative richness and abundance of non-native species across different stream reaches. We found that streams that were experiencing a decreasing trend in flow variability through time and streams that had lower tree cover in their upstream watershed were more likely to expe
	 
	4. How does invasive fish species impact native fish communities? 
	 
	Based on our discussions with project partners from federal and state agencies, we focused on investigating the impacts of silver carp (H. molitrix), yellowfin shiner (N. lutipinnis), and mosquitofish (Gambusia spp.) on native fish. We found very strong evidence for the negative association between silver carp and native fish richness, after controlling for other environmental factors that may drive native richness. This suggests that silver carp likely has a negative impact on native fish species. Previous
	 
	5. Which streams are likely to be colonized by which invasive species in the next 30 years? 
	 
	To answer this question, we conducted species distribution modeling (SDM) of non-native species. We produced maps of habitat suitability under current (1980-2010) climatic and land-cover conditions as well as under future (2035-2065) projected climate and land-cover scenarios. Warmwater- and mainstem-adapted species that are currently invading in the lower reaches of the TCRB such as silver carp (Hypophthalmichthys molitrix; particularly under RCP 8.5) and bighead carp (H. nobilis, under RCP 4.5 and 8.5) ar
	 
	8. CONCLUSIONS AND RECOMMENDATIONS 
	 
	Our study indicates that climate change and land-cover change will continue to affect stream ecosystems both directly and through their effects on non-native fish. We found that non-native fish have continued to invade new stream reaches in the TCRB over the past 15-30 years, expanding their distributions. Many fish have also increased their abundances relative to other species in their community. State and federal agencies should focus on species that have expanded their ranges and increased their local ab
	 
	Based on our analyses on community-level trends in relative non-native richness and abundance, it is clear that maintaining a high level of tree cover in the watershed guards against increases in richness and abundance of non-native relative to native species. To protect against invasive species and their potential impacts of native, policymakers should aim to maintain a high tree cover in the upstream watersheds. We also found that climate change may increase non-native species richness and abundance in st
	 
	Based on our impact analysis, increasing silver carp abundance was linked to lower native fish species richness. We understand that silver carp, along with the three other Asian carp species, are current priorities for control by state and federal agencies within the TCRB. Our research provides evidence on the negative impact of silver carp, thus providing further support for controlling and reducing its population to the maximum extent possible. 
	 
	Lastly, we provided current and future habitat suitability maps for non-native fish species. State and federal agencies can use the maps to determine which locations to sample and monitor for expanding populations of non-native fish based on current known records and suitable habitat areas that are proximal to current populations. 
	 
	Our work is ongoing. This project provided our team with a unique opportunity to work with partners and collaborators from different agencies in learning about the most pressing knowledge gaps and questions related to invasive fish management. Importantly, this collaboration also resulted in the compilation of a large fish occurrence and community sampling database in the Southeast. This compiled dataset is currently being used in a NSF-funded project to incorporate bioenergetics in determining fish distrib
	 
	We will continue to build this dataset to further understand how climate change, land-cover change, and fish invasions interact to affect native species. We have started preliminary work on understanding how these stressors interact (additively or synergistically, etc.) to affect range and abundance shifts of native species. Using the data we have compiled, we also have plans to build species distribution models to understand how distributions of fish species of greatest conservation concern (SGCN) would ch
	 
	9. MANAGEMENT APPLICATIONS AND PRODUCTS 
	 
	We generated new scientific knowledge and data products that can be applied and used in the management of invasive fish species. Our list of non-native species and their rates of range expansion and abundance increase can inform monitoring and eradication efforts conducted by agencies. By identifying drivers of non-native richness across fish communities, agencies and researchers can design programs that target (reduce) the effect of important variables such as maintaining high tree cover in important water
	 
	The products we deliver in our project are as follows: 
	 
	1. PRMS streamflow data for the Tennessee River basin disaggregated at the COMID grain 
	2. Modelled stream temperature data for the Tennessee and Cumberland River basins at the COMID grain 
	3. Fish modeling results (habitat suitability maps for present, 1980-2010, and the future, 2035-2065 under different climate scenarios) 
	4. Example R code for species distribution modelling include identifying suitable stream reaches (COMIDs) that are reachable by a species 
	 
	10. OUTREACH AND COMMUNICATION 
	 
	We organized a project kickoff meeting in July 2021 where we presented our preliminary research questions, and preliminary summaries of the data and some analyses to our project partners and collaborators from Tennessee Valley Authority, Alabama Department of Environmental Management, USGS, Conservation Fisheries Inc. and Mainspring Conservation Trust as well as academic institutions University of Alabama and University of Tennessee, Knoxville. From this meeting, we were able to further fine-tune our resear
	 
	We also worked with project cooperator, Jacob LaFontaine, and his hydrological modelling team at the USGS South Atlantic Water Science center in a 3-hour online workshop where we worked towards adapting the PRMS model to produce streamflow outputs tailored toward our project needs. 
	 
	Members of the project team also introduced the project and described the research questions and methodology, and data compilation efforts undertaken in this project in several seminars given at professional meetings as well as academic settings. These seminars include: 
	 
	1. Giam X. 2021. Conserving fish biodiversity under climate change in the Tennessee River Basin. Tennessee River Basin Network (TRBN) Annual Meeting 2021. Online. 
	1. Giam X. 2021. Conserving fish biodiversity under climate change in the Tennessee River Basin. Tennessee River Basin Network (TRBN) Annual Meeting 2021. Online. 

	 
	2. Giam X. 2021. Projecting freshwater fish responses to climate change. Departmental Seminar Series, Warnell School of Forestry and Natural Resources, University of Georgia. 
	2. Giam X. 2021. Projecting freshwater fish responses to climate change. Departmental Seminar Series, Warnell School of Forestry and Natural Resources, University of Georgia. 

	 
	We also presented preliminary results of our analyses in this project as well as related analyses using the data compiled in the course of this project at ecology conferences: 
	 
	3. Giam X. et al. 2023. Multidecadal effects of climate and land-use change on stream fish communities in the southeastern US. Ecological Society of America Annual Meeting 2023, Portland, OR. Contributed talk. 
	3. Giam X. et al. 2023. Multidecadal effects of climate and land-use change on stream fish communities in the southeastern US. Ecological Society of America Annual Meeting 2023, Portland, OR. Contributed talk. 

	 
	4. Giam X., Herrera-R. G., Keck B. 2024. Distributional range shifts of fish species in the Tennessee and Cumberland river basins. Ecological Society of America Annual Meeting 2024, Long Beach, CA. Poster. 
	4. Giam X., Herrera-R. G., Keck B. 2024. Distributional range shifts of fish species in the Tennessee and Cumberland river basins. Ecological Society of America Annual Meeting 2024, Long Beach, CA. Poster. 

	 
	Data compiled in the course of this project has also been used for the educational outreach and professional development of K-12 teachers. We used fish community data compiled in this project along with other datasets (e.g., lake ice and temperature) to demonstrate example lesson plans to integrating data in teaching climate science, freshwater ecology and ecosystem ecology:  
	 
	5. Aydeniz M., Giam X. 2023. Engaging Students in Scientific Inquiry and Computational Thinking through Local Fish Investigations: A Hands-On Inquiry Lesson. Tennessee Science Teachers Association Annual Meeting 2023. 3-hr in person workshop. 
	5. Aydeniz M., Giam X. 2023. Engaging Students in Scientific Inquiry and Computational Thinking through Local Fish Investigations: A Hands-On Inquiry Lesson. Tennessee Science Teachers Association Annual Meeting 2023. 3-hr in person workshop. 

	 
	Last, we most recently presented results from a previous version of our analyses of this project in a SE CASC Science Seminar in October 2024. 
	 
	6. Giam X. 2024. Climate and land-use change impacts on the distribution and abundance of non-native fish in the Tennessee and Cumberland River Basins with Xingli Giam. SE CASC Science Seminar Series. October 23 2024. 
	6. Giam X. 2024. Climate and land-use change impacts on the distribution and abundance of non-native fish in the Tennessee and Cumberland River Basins with Xingli Giam. SE CASC Science Seminar Series. October 23 2024. 

	 
	We are currently preparing multiple manuscripts for submission to several peer-reviewed journals. 
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